Sunday July 23rd, 2023 at the Ala Moana Hotel, 410 Atkinson Drive in Honolulu, Hawaii 96814 United States Co-located with ICML
Accepted papers are available at OpenReview for archival purposes. This does not constitute a proceedings for the symposium.
Quasi-Bayesian Density Estimation via Autoregressive Predictives
Sahra Ghalebikesabi, Christopher C. Holmes, Edwin Fong, Brieuc Lehmann |
|
Dimensionality Reduction as Probabilistic Inference
Aditya Ravuri, Francisco Vargas, Vidhi Lalchand, Neil D Lawrence |
|
SAMBA: Regularized Autoencoders perform Sharpness-Aware Minimization
Patrik Reizinger, Ferenc Huszár |
|
Robust Hybrid Learning With Expert Augmentation
Antoine Wehenkel, Jens Behrmann, Hsiang Hsu, Guillermo Sapiro, Gilles Louppe, Joern-Henrik Jacobsen |
|
Expressiveness Remarks for Denoising Diffusion Based Sampling
Francisco Vargas, Teodora Reu, Anna Kerekes |
|
Function-Space Regularization for Deep Bayesian Classification
Jihao Andreas Lin, Joe Watson, Pascal Klink, Jan Peters |
|
Attacking Bayes: Are Bayesian Neural Networks Inherently Robust?
Yunzhen Feng, Tim G. J. Rudner, Nikolaos Tsilivis, Julia Kempe |
|
An Information-Theoretic Perspective on Variance-Invariance-Covariance Regularization
Ravid Shwartz-Ziv, Randall Balestriero, Kenji Kawaguchi, Tim G. J. Rudner, Yann LeCun |
|
Variational Partitioning
Thomas M. Sutter, Alain Ryser, Joram Liebeskind, Julia E Vogt |
|
Sample Average Approximation for Black-Box VI
Javier Burroni, Justin Domke, Daniel Sheldon |
|
Balancing Simulation-based Inference for Conservative Posteriors
Arnaud Delaunoy, Benjamin Kurt Miller, Patrick Forré, Christoph Weniger, Gilles Louppe |
|
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Vincent Fortuin |
|
Indirect Functional Bayesian Neural Networks
Mengjing Wu, Junyu Xuan, Jie Lu |
|
Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
Jack Simons, Louis Sharrock, Song Liu, Mark Beaumont |
|
Linearized Laplace Inference in Neural Additive Models
Kouroche Bouchiat, Alexander Immer, Hugo Yèche, Vincent Fortuin |
|
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Alexander Möllers, Alexander Immer, Elvin Isufi, Vincent Fortuin |
|
Improving Continual Learning by Accurate Gradient Reconstructions of the Past
Erik Daxberger, Siddharth Swaroop, Kazuki Osawa, Rio Yokota, Richard E Turner, José Miguel Hernández-Lobato, Mohammad Emtiyaz Khan |
|
A Dual Control Variate for accelerated black-box variational inference
Xi Wang, Tomas Geffner, Justin Domke |
|
Individual Fairness in Bayesian Neural Networks
Alice Doherty, Matthew Robert Wicker, Luca Laurenti, Andrea Patane |
|
Variational Prediction
Alexander A Alemi, Ben Poole |
|
How to Train Your FALCON: Learning Log-Concave Densities with Energy-Based Neural Networks
Alexander Lin, Demba E. Ba |
|
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
Yucen Lily Li, Tim G. J. Rudner, Andrew Gordon Wilson |
|
Long-tailed Classification from a Bayesian-decision-theory Perspective
Bolian Li, Ruqi Zhang |
|
Automatically Marginalized MCMC in Probabilistic Programming
Jinlin Lai, Javier Burroni, Hui Guan, Daniel Sheldon |
|
Variational Bayesian Last Layers
James Harrison, John Willes, Jasper Snoek |
|
Refining Amortized Posterior Approximations using Gradient-Based Summary Statistics
Rafael Orozco, Ali Siahkoohi, Mathias Louboutin, Felix Johan Herrmann |
|
Approximate inference by broadening the support of the likelihood
Michael Wojnowicz, Martin D Buck, Michael C Hughes |
|
Visual Explanations of Image-Text Representations via Multi-Modal Information Bottleneck Attribution
Ying Wang, Tim G. J. Rudner, Andrew Gordon Wilson |
|
Neural Adaptive Smoothing via Twisting
Michael Y. Li, Dieterich Lawson, Scott Linderman |
|
Amortised Inference in Neural Networks for Small-Scale Probabilistic Meta-Learning
Matthew Ashman, Tommy Rochussen, Adrian Weller |
|
Clustering inconsistency for Pitman--Yor mixture models with a prior on the precision but fixed discount parameter
Caroline Lawless, Julyan Arbel, Louise Alamichel, Guillaume KON KAM KING |
|
Variational Bayes Made Easy
Mohammad Emtiyaz Khan |
|
Independent Mechanism Analysis in GPLVMs
Patrik Reizinger, Han-Bo Li, Aditya Ravuri, Ferenc Huszár, Neil D Lawrence |
|
Online Laplace Model Selection Revisited
Jihao Andreas Lin, Javier Antoran, José Miguel Hernández-Lobato |
Optimally-weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti, Masha Naslidnyk, Oscar Key, Samuel Kaski, Francois-Xavier Briol |
|
Graphically Structured Diffusion Models
Christian Dietrich Weilbach, William Harvey, Frank Wood |
|
Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables
Mengdi Xu, Peide Huang, Yaru Niu, Visak Kumar, Jielin Qiu, Chao Fang, Kuan-Hui Lee, Xuewei Qi, Henry Lam, Bo Li, Ding Zhao |
|
Sampling-based inference for large linear models with application to linearised Laplace
Javier Antoran, Shreyas Padhy, Riccardo Barbano, Eric Nalisnick, David Janz, José Miguel Hernández-Lobato |
|
Logit-Based Ensemble Distribution Distillation for Robust Autoregressive Sequence Uncertainties
Yassir Fathullah, Guoxuan Xia, Mark Gales |
|
Learning Group Importance using the Differentiable Hypergeometric Distribution
Thomas M. Sutter, Laura Manduchi, Alain Ryser, Julia E Vogt |
|
Massively Scaling Heteroscedastic Classifiers
Mark Collier, Rodolphe Jenatton, Basil Mustafa, Neil Houlsby, Jesse Berent, Efi Kokiopoulou |
|
Robust and Scalable Bayesian Online Changepoint Detection
Matias Altamirano, Francois-Xavier Briol, Jeremias Knoblauch |
|
Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions
Leo Klarner, Tim G. J. Rudner, Michael Reutlinger, Torsten Schindler, Garrett M Morris, Charlotte Deane, Yee Whye Teh |
|
Function-Space Regularization in Neural Networks: A Probabilistic Perspective
Tim G. J. Rudner, Sanyam Kapoor, Shikai Qiu, Andrew Gordon Wilson |
|
Approximately Bayes-Optimal Pseudo Label Selection
Julian Rodemann, Jann Goschenhofer, Emilio Dorigatti, Thomas Nagler, Thomas Augustin |
|
Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks
Dominik Schnaus, Jongseok Lee, Daniel Cremers, Rudolph Triebel |
|
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran, Babak Shahbaba, Stephan Mandt, Maurizio Filippone |
|
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan, Edwin V. Bonilla, Terence O'kane, Scott A Sisson |
|
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer, Tycho F. A. van der Ouderaa, Mark van der Wilk, Gunnar Ratsch, Bernhard Schölkopf |
|
MMVAE+: Enhancing the Generative Quality of Multimodal VAEs without Compromises
Emanuele Palumbo, Imant Daunhawer, Julia E Vogt |