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An astronomical image

An image from the Sloan Digital Sky Survey covering roughly one quarter
square degree of the sky.
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Faint light sources

Most light sources are near the detection limit.
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Outline

1. our graphical model for astronomical images (Celeste)
2. scaling approximate posterior inference to catalog the visible universe
3. model extensions
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The Celeste graphical model
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Scientific color priors
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Galaxies: light-density model

The light density for galaxy s is modeled as
mixture of two extremal galaxy prototypes:

hs (w) = θshs1 (w) + (1− θs)hs0 (w) .

Each prototype (i = 0 or i = 1) is a mixture of
bivariate normal distributions:

hsi (w) =
J∑

j=1

η̄ijφ (w ;µs , ν̄ijQs) .

Shared covariance matrix Qs accounts for the
scale σs , rotation ϕs , and axis ratio ρs .

An elliptical galaxy,
θs = 0

A spiral galaxy, θs = 1
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Idealized sky view

The brightness for sky position w is

Gb(w) =
S∑

s=1

`sbgs(w)

where

gs (w) =

{
1 {µs = w} , if as = 0 (“star”)
hs(w), if as = 1 (“galaxy”).
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Astronomical images

Images differ from the idealized sky view due to

1. pixelation and point spread

fnbm(w) =
K∑

k=1

ᾱnbkφ
(
wm;w + ξ̄nbk , τ̄nbk

)
Gnbm = Gb ∗ fnbm

2. background radiation and calibration

Fnbm = ιnb [εnb + Gnbm]

3. finite exposure duration

xnbm| (as , rs , cs)Ss=1 ∼ Poisson (Fnbm)
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Intractable posterior

Let Θ = (as , rs , cs)Ss=1. The posterior on Θ is intractable because of
coupling between the sources:

p(Θ|x) =
p(x |Θ)p(Θ)

p(x)

and

p(x) =

∫
p(x |Θ)p(Θ) dΘ

=

∫ N∏
n=1

B∏
b=1

M∏
m=1

p(xnbm|Θ)p(Θ) dΘ.
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Variational inference

Variational inference approximates the exact posterior p with a simpler
distribution q? ∈ Q.
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Variational inference for Celeste

I An approximating distribution that factorizes across light sources (a
“structured mean-field” assumption) makes most expectations
tractable:

q(Θ) =
S∏

s=1

q(Θs).

I The delta method for moments approximates the remaining
expectations.

I Existing catalogs provide good initial settings for the variational
parameters.

I Light sources are unlikely to contribute photons to distant pixels.
I The model contains an auxiliary variable indicating the mixture

component that generated each source’s colors.
I Newton’s method converges in tens of iterations.
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Validation from Stripe 82

Photo Celeste
position 0.37 0.24
missed gals 23 / 421 8 / 421

missed stars 10 / 421 38 / 421

color u-g 1.25 0.70
color g-r 0.37 0.21
color r-i 0.25 0.17
color i-z 0.31 0.15
brightness 0.20 0.37
profile 0.26 0.31
axis ratio 0.19 0.13
scale 1.64 1.76
angle 17.04 12.64

Average error. Lower is better. Highlight scores are more than 2 standard
deviations better.
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Scaling inference to the visibile universe



The setting

Big data

I Sloan Digital Sky Survey: 55 TB of images; hundreds of millions of
stars and galaxies

I Large Synoptic Survey (2019): 15 TB of images nightly

Fancy hardware

I Cori supercomputer, Phase 1: 1,630 nodes, each with 32 cores.
I Cori supercomputer, Phase 2: 9,300 nodes, each with 272 hardware

threads. 30 teraflops.
I 1.5 PB array of SSDs
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Julia programming language

I high-level syntax
I as fast as C++ (when necessary)
I a single language for “hotspots” and the rest
I multi-threading (experimental), not just multi-processing
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Fast serial optimization algorithm

I analytic expectations (and one in delta method for moments)
I block coordinate ascent
I Newton steps rather than L-BFGS or a first-order method
I manually coded gradients and Hessians
I 3x overhead from computing exact Hessians
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Parallelism among nodes

A region of the sky, shown twice, divided into 25 overlapping boxes: A1,. . .,A9
and B1,. . .,B16. Each box corresponds to a task: to optimize all the light
sources within its boundaries.
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Parallelism among threads

Light sources that do not overlap may be updated concurrently.

[1] Pan, Xinghao, et al. “CYCLADES: Conflict-free Asynchronous Machine Learning.”
NIPS 2016.

20 / 31



Parallelism among threads

Light sources that do not overlap may be updated concurrently.

[1] Pan, Xinghao, et al. “CYCLADES: Conflict-free Asynchronous Machine Learning.”
NIPS 2016.

20 / 31



Weak and strong scaling

Celeste light sources/second. We observe perfect scaling up to 64 nodes. The
we are limited by interconnect bandwidth.
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Hero run: catalog of the Sloan Digital Sky Survey

I 512 nodes × 32 cores/node = 16,384 cores
I 16,384 cores × 16 hours = 250,000 core hours
I input: 55 TB of astronomical images
I output: catalog of 250 million light sources
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A deep generative model for galaxies



A deep generative model for galaxies

zn ∼ N (0, I)

xn|zn ∼ N (fµ(z), fσ(z))

Example

zn = [0.1,−0.5, 0.2, 0.1]ᵀ

fµ(zn) =

fσ(zn) =

xn =
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Autoencoder architecture
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Sample fits

Each row corresponds to a different example from a test set. The left column
shows the input x . The center column shows the output fµ(z) for a z sampled
from N (gµ(x), gσ(x)). The right column shows the output fσ(z) for the same
z .
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Second-order stochastic variational inference



Second-order Stochastic Variational Inference

Require: ω is the initial vector of variational parameters; δ ∈ (δmin, δmax) is the initial
trust-region radius; γ > 1 is the trust region expansion factor; and η1 ∈ (0, 1) and
η2 > 0 are constants.

1: for i ← 1 to M do
2: Sample e1, . . . , eN iid from base distribution ε.
3: g ← ∇νL̂(ν; e1, . . . , eN)|ω
4: H ← ∇2

νL̂(ν; e1, . . . , eN)|ω
5: ω′ ← argmaxν {gᵀν + νᵀHν : ‖ν‖ ≤ δ} . non-convex quadratic optimization
6: β ← gᵀω′ + ω′ᵀHω′ . the expected improvement
7: Sample e′1, . . . , e

′
N iid from base distribution ε.

8: α← L̂(ω′; e′1, . . . , e
′
N)− L̂(ω; e′1, . . . , e

′
N) . the observed improvement

9: if α/β > η1 and ‖g‖ ≥ η2δ then
10: ω ← ω′

11: δ ← max(γδ, δmax)
12: else
13: δ ← δ/γ

14: if δ < δmin or i = M then return ω

68X fewer iterations than ADVI/SGD.
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Case study: empirical convergence rates
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Open questions

I How do we more accurately approximate the posterior distribution?
I normalizing flows without an encoder network
I hybrid VI/MCMC
I linear response variational Bayes (LRVB)

I How do we model a spatially varying point spread function (PSF)?
I Variational autoencoders fit independent PSFs well.
I But it isn’t easy to account for dependence among the PSFs of

nearby astronomical objects.
I How can we easily account for the details we don’t yet account for?

I cosmic rays, airplanes, and satelights
I camera saturation (censoring) and imaging artifacts
I terrestrial vs extraterestrial background radiation
I transient events: supernovae, exoplanets, and near-Earth asteroids
I additional imaging datasets, spectrographic datasets, calibration

datasets
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Thank you!
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