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Motivation and question

Variational inference is not robust for complex hierarchical models fitted to
high-dimensional data

@ how can we combine results among different VI estimates?

@ what can we say about the estimates from these aggregations?
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What problem are we trying to solve?

@ Main goal here is parameter inference, not prediction

@ Two local optima with the same evidence lower bound (elbo) are not
equivalent, because they highlight different signals in the data
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Factor analysis: linear map of high dimensional data

Matrix Y is observations of p features over n samples (this is the
transpose of classical FA, for data reasons)

@ Factor analysis: project matrix Y onto a linear subspace A (loadings)
using weights X (factors), assuming Gaussian noise ¢:

K
Yii~N (Z /\j,ka,i,¢J-1)

k=1
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Bayesian biclustering for genomic data

Contributions to variation in gene expression levels are

@ sparse & dense in genes: small sets of genes may be affected by
covariates

@ sparse & dense in samples: genotype, cell type, sex, smoking status

We build a model for biclustering, creating non-disjoint clusters in both
genes and samples
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Bayesian biclustering model

We put a three parameter beta prior on the factors and loadings:
o ~ TPB(e f,v),
1
Ck ~ TPB <C, d,E — 1>

vik ~ TPB (a, b, 1 — 1) ,
Ck

1
Nk ~ /\/(0, —1>,
Vi k

and similarly for factors X to induce sparsity.
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Bayesian biclustering model: Regularization

Regularization on X (structurally identical to regularization for A), can be
written as [Armagan, Dunson, Clyde 2011].

¢ ~ Ga(fx,§),
x ~ Ga
kK ~ Ga
wk ~ Ga(cx, ki)
pki ~ Ga(bx,wk),
ok ~ wGa(ax,pk,i) + (1 —m)d(wk)

)

xii ~ N(0,04),

)
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Bayesian biclustering model

To allow both sparse and dense factors and loadings, we use a
two-component mixture:

1
Pik ~ T PB <3, ba ? - 1) + (1 - ﬂ)é(Ck)a
k
where the indicator variable z, has a beta Bernoulli distribution:

mla, 5~ Be(a, )
zglm ~ Bern(m),k={1,...,K}.
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Recovering gene networks from factor models

Marginalizing over X, FA becomes regularized covariance estimation:

Yi ~ Np(0,Q)fori=1,...,n
Q = AIAT + v,

where ¥ is the K x K covariance matrix for X.

o If we invert Q, we recover the precision matrix for the genes

@ (Normalized) precision matrix represents partial correlation of every
gene pair: cor(x;j, xjr|x-j jr)

@ Thresholding the precision matrix (FDR), we recover a Gaussian
Markov random field across genes
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Context-specific gene co-expression networks

We can subset the components in the biclustering model to recover
interesting types of co-expression networks:

A C {1,...,K}
Qp = AAZA,AAZ‘F\U-

If we invert €24, we recover the precision matrix for the genes that load
onto the components in A.

We choose to subset A as follows:

@ Ubiquitous networks: factor is dense across samples

o Differential networks: factor modes across two sample subtypes differ

o Context-specific networks: factor is non-zero only for sample subtype
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Variational expectation maximization

The variational approximation of p(A, X, z,0,®|Y) is written as:
4(A,X,2,0,0) = p(Aiz, ®a)p(X|0, Ox)p(z|@n)p(0|Ox)p(O)p(Ox)
where @5 and Ox denote the parameters of A and X, respectively. Then,

P(N.z,0p) = p(A|z,On)p(z|On)p(On)

1=
[H LTIV l6).6)Ga(6).k12, 6.4 )Ga(8). |, ¢k)]

j=1k=1

b K 1;-0
X [H [TV, k|¢k):|
J=1 k=1
K
I

K

[ Bern(z|m)

k=1

Beta(n|a, B)

X [ Ga(¢k|c, 7w)Ga(Tk|d, n)} Ga(nle,v)Ga(vIf,v).
k=1
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Variational expectation maximization

@ random initialization

o generate parameters from variational approximation
o specifically, generate A ~ N (0, /)

@ iterate until convergence

o E-step
@ compute the expected value of z.x
@ compute the expected value of X
@ compute the expected value of Xz/zjfleT

o variational M-step: coordinate ascent variational inference
o O = arg ming(e,) KL(q(On)||(OA[Y))
@ convergence defined by evidence lower bound:
elbo(q) = E[log p(Y',©)] + E[log q(©)]
o specifically, update A in a greedy way
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VEM results not robust to random initializations
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Variational EM: first try to robustify results

@ We run variational EM 1,000 times with random restarts.
@ We build a network from the results from each run

@ We let each network ‘“vote” on the network edges: edge is in the
network if number of models that it appears in is > r
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Related ideas in combining across approximate

marginals

Bagging (bootstrap aggregation) [Breiman 1996]

Firefly Monte Carlo [Maclaurin & Adams 2014]

Median posterior [Minsker, Srivastava, Lin, Dunson 2014]

@ Structured stochastic variational inference [Hoffman & Blei 2015]

Intersection of sparse factors across tensor decomposition runs [Hore
et al. 2016]
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Tissue-specific networks
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Tissue-specific networks

ARRB1 "  GLCCIL

Lung-specific network . P,

@ KCNEI lung lobectomy ay L
responsive o 3 i <
@ PAPPA lung cancer growth @f

@ ARRBI nicotine-induced growth
of lung tumors S

Skin-specific network =8 R)"%
e RHPN2 cancer initiatiator ok
X
@ CD68 skin tumors growth ﬁ\ -
RRRRR S_c N |

Barbara E Engelhardt ABI in high-dimensional applications December 9, 2016



Validation of network edges

Given a gene of interest A, its associated genetic variant @, and a gene B
that is a neighbor of A in the tissue-specific network, we tested for
association between @ and B in out of sample data.
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Validated edges

Adipose network validation
@ 85 trans-eQTLs (FDR < 0.10)
o trans-eQTL for TK2, deficiency causes abnormal adipose tissues

Artery network validation
@ two trans-eQTLs (FDR < 0.10)
o trans-eQTLs for PLVAP and CYYRI, unique to artery samples

| A\

Lung network validation
@ nine trans-eQTLs (FDR < 0.15)
o trans-eQTL for DENNDIC, which is unique to lung samples

Skin network validation
@ eight trans-eQTLs (FDR < 0.25)
@ trans-eQTLs for CDH3, related to juvenile macular dystrophy

| \
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We developed Bayesian biclustering models and fitted these models to
gene expression data using variational EM

@ to identify sources of gene co-variation;

@ to recover gene co-expression networks.

Ongoing work
o developing and formalizing methods to robustify results;

@ use stochastic variational inference for additional stochasticity across
runs;

@ methods to combine across posterior estimates with different
(non-Bernoulli) marginals
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Bayesian biclustering results on simulated data
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Biclustering model

Model for biclustering encodes subsets of samples, genes for which
covariation is observed
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Bayesian biclustering results on GTEx data

@ Genotype-Tissue Expression (GTEx) study
@ Hundreds of individuals, RNA-seq on > 30 tissues per individual
@ Whole-genome sequences for all individuals
@ Here: data subset with four tissues, ~ 200 individuals
@ BicMix identified 9,854 unique sparse components across 200 runs
0.15+
Configuration
@ DD = Dense loading, dense 0.104 bD
: DS
factor (population structure) w 5o
o
@ SD = Sparse loading, dense 0057 ss
factor (age, BMI, batch) - e }
@ DS = Dense loading, sparse 0 andexofi%mponeﬁs 100
factor (bad sample)
@ S5 = Sparse loading, sparse Median component-wise PVE for
factor (eQTLs, cell type, sex) three DD, 50 SD, 50 SS, and two DS

components
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