

Online Spike-and-slab Inference with Stochastic Expectation Propagation

Shandian Zhe¹, Kuang-chih Lee², Kai Zhang³, and Jennifer Neville¹ ¹Purdue University ²Yahoo! Research ³NEC Laboratories America

Motivation

- Sparse learning is important to real applications with high dimensional data.
- \blacktriangleright Too many features \rightarrow complicated model \rightarrow huge training data \rightarrow expensive computational cost
- Small models are critical to real-time applications, such as online bidding for Ads. displaying.
- Spike-and-slab prior is the golden standard for Bayesian sparse learning; compared with popular L₁ regularization approaches, it has an appealing *selective shrinkage* effect. Suppose for each feature j, we have a weight w_i and the spike-and-slab prior over w_i is

 $p(s_j) = \text{Bern}(s_j | \rho_0) = \rho_0^{s_j} (1 - \rho_0)^{1 - s_j}, \quad p(w_j | s_j) = s_j \mathcal{N}(w_j | 0, \tau_0) + (1 - s_j) \delta(w_j)$ where $\delta(\cdot)$ is a Dirac-delta function.

Spike-and-slab prior is less popular, mainly due to the computational hurdle for posterior inference, especially for large data—massive samples, very high dimensions.

Algorithm 1 OLSS($\mathcal{D}, \rho_0, \tau_0, M, T, \{n_j^+, n_j^-\}_j$)

Random shuffle samples in \mathcal{D} . Initialize for each feature j: $\rho_j = 0.5$, $\mu_{1j} = \mu_{2j}^+ = \mu_{2j}^- = 0$, $v_{1j} = v_{2j}^+ = v_{2j}^- = 10^6$. **repeat**

Collect a mini-batch of samples B_i with size M, where B_i^+ are B_i^- denote the positive and negative samples, and b_{ij}^+ and b_{ij}^- denote the appearance counts of feature j in B_i^+ and B_i^- . Calculate the approximate likelihood for each sample in B_i to obtain $\{\mathcal{N}(w_j|\mu_{jt}, v_{jt})\}_{j,t\in B_i}$ Update the Gaussian terms for the average-likelihoods:

$$v_{2j}^{+} \stackrel{-1}{\leftarrow} \frac{b_{ji}^{+}}{n_{j}^{+}} \sum_{t \in B_{i}^{+}} v_{jt}^{-1} + \frac{n_{j}^{+} - b_{ji}^{+}}{n_{j}^{+}} v_{2j}^{+-1}, \frac{\mu_{2j}^{+}}{v_{2j}^{+}} \leftarrow \frac{b_{ji}^{+}}{n_{j}^{+}} \sum_{t \in B_{i}^{+}} \frac{\mu_{jt}}{v_{jt}} + \frac{n_{j}^{+} - b_{ji}^{+}}{n_{j}^{+}} \frac{\mu_{2j}^{+}}{v_{2j}^{+}},$$

$$v_{2j}^{-1} \leftarrow \frac{b_{ji}^{-}}{n_{j}^{-}} \sum_{t \in B_{i}^{-}} v_{jt}^{-1} + \frac{n_{j}^{-} - b_{ji}^{-}}{n_{j}^{-}} v_{2j}^{-1}, \frac{\mu_{2j}^{-}}{v_{2j}^{-}} \leftarrow \frac{b_{ji}^{-}}{n_{j}^{-}} \sum_{t \in B_{i}^{-}} \frac{\mu_{jt}}{n_{j}^{-}} + \frac{n_{j}^{-} - b_{ji}^{-}}{n_{j}^{-}} \frac{\mu_{2j}^{-}}{v_{2j}^{-}}.$$

If T mini-batches have been processed, update $\{\rho_j, \mu_{1j}, v_{1j}\}_j$ for the approximate prior terms. **until** all samples in \mathcal{D} is passed.

return $q(\mathbf{w}, \mathbf{s}) = \prod_{j} \mathcal{N}(w_{j} | \mu_{j}, v_{j}) \operatorname{Bern}(s_{j} | \alpha_{j})$, where $v_{j} = \left(v_{1j}^{-1} + n_{j}^{+} v_{2j}^{+-1} + n_{j}^{-} v_{2j}^{--1}\right)^{-1}$, $\mu_{j} = v_{j} \left(\frac{\mu_{1j}}{v_{1j}} + n_{j}^{+} \frac{\mu_{2j}^{+}}{v_{2j}^{+}} + n_{j}^{-} \frac{\mu_{2j}^{-}}{v_{2j}^{-}}\right)$, $\alpha_{j} = \sigma \left(\sigma^{-1}(\rho_{0}) + \sigma^{-1}(\rho_{j})\right) (\sigma(\cdot))$ is the logitic function).

Experiments

► We focus on linear classification model:

$$p(\mathcal{D}, \mathbf{w}, \mathbf{s} | \rho_0, \tau_0) = \prod_{j=1}^d \operatorname{Bern}(s_j | \rho_0) (s_j \mathcal{N}(w_j | 0, \tau_0) + (1 - s_j) \delta(w_j)) \prod_{n=1}^N \Phi(y_n \mathbf{w}_{l_n}^\top \hat{\mathbf{x}}_n)$$

where $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_n)\}$ are data, \mathbf{w} are classification weights, \mathbf{s} are selection indicators, and $\Phi(\cdot)$ is the CDF of standard Gaussian distribution.

► We use the stochastic expectation propagation framework.

► Expectation propagation (EP). The general form of a joint distribution is

$$p(oldsymbol{ heta},\mathcal{D})=p_0(oldsymbol{ heta})\prod_n p(oldsymbol{z}_n|oldsymbol{ heta}).$$

EP approximates $p(oldsymbol{ heta},\mathcal{D})$ with

 $q(oldsymbol{ heta}) \propto f_0(oldsymbol{ heta}) \prod_n f_n(oldsymbol{ heta}).$

EP maintains and iteratively refines each approximate terms f_i with four steps: (1) calculating the calibrating distribution, $q_{-i}(\theta) \propto q(\theta)/f_i(\theta)$; (2) constructing a tilted distribution $t_i(\theta) \propto q_{-i}(\theta)p(\mathbf{z}_i|\theta)$; (3) projecting t_i back into the exponential family, $q^*(\theta) \propto \operatorname{proj}(t_i(\theta))$, via moment matching; (4) updating the f_i : $f_i^{\operatorname{new}}(\theta) \propto q^*(\theta)/q_{-i}(\theta)$. • Stochastic expectation propagation (SEP): using **one average likelihood** to summarize the data.

$$q(oldsymbol{ heta}) \propto f_0(oldsymbol{ heta}) f_a(oldsymbol{ heta})^N$$

SEP sequentially process data samples and update the average likelihood f_a in an online fashion:

$$f_{a}(\boldsymbol{\theta})^{\mathrm{new}} = (f_{a}(\boldsymbol{\theta})f_{a}(\boldsymbol{\theta})^{N-1})^{\frac{1}{N}}$$

- ► Real CTR prediction task on Yahoo! Display ads platform.
- ► Training data: click logs between 07/15/2016 and 07/21/2016
- ► Testing data: click logs in 07/22/2016, 07/23/2016 and 07/24/2016.
- ► Feature number: 204, 327.
- Training and testing sizes: 1.8M, 133.7M, 116.0M, and 110.2M.
- Competing methods: online logistic regression in Vowpal Wabbit (VW), FTRL-proximal (FTRLp).
- Sparsity achievement.

Table: The number of selected features v.s. the setting of ρ_0 .

ρ_0	0.8	0.5	0.4	0.3	0.1	10^{-3}	10^{-5}	10^{-7}
feature number	204,080	53,827	5,591	3,810	2,174	1,004	663	504
ratio (%)	99.9%	26.3%	2.7%	1.9%	1.1%	0.5%	0.3%	0.2%

Predictive performance with different sparsity levels.

Usage of the selected features. We used 504 features selected by OLSS and trained a nonlinear classification model, Gradient Boosting Tree (GBT).

 $r_a(\mathbf{O}) = (r_n(\mathbf{O})r_a(\mathbf{O}))$

The corresponding updates in terms of the natural parameters are

$$\boldsymbol{\lambda}_a^{ ext{new}} = rac{1}{N} \boldsymbol{\lambda}_n + (1 - rac{1}{N}) \boldsymbol{\lambda}_a$$

- Our approximation for spike-and-slab models:
 - We approximate the prior term, $s_j \mathcal{N}(w_j|0, \tau_0) + (1 s_j)\delta(w_j)$, with Bern $(s_j|\alpha_j)\mathcal{N}(w_j|\mu_{1j}, v_{1j})$.
- We use **two average-likelihood terms**, $f_a^+(\mathbf{w}_I)$ and $f_a^-(\mathbf{w}_I)$, defined by $f_a^+(\mathbf{w}_I) = \prod_{j \in I} \mathcal{N}(w_j | \mu_{2j}^+, v_{2j}^+)$ and $f_a^-(\mathbf{w}_I) = \prod_{j \in I} \mathcal{N}(w_j | \mu_{2j}^-, v_{2j}^-)$, for the **positive** and **negative** samples, respectively.
- Fully factorization form:

 $q(\mathbf{w}, \mathbf{s}) \propto \prod_{j=1}^{d} \operatorname{Bern}(s_{j}|
ho_{0}) \operatorname{Bern}(s_{j}|
ho_{j}) \mathcal{N}(w_{j}|\mu_{1j}, v_{1j}) \mathcal{N}(w_{j}|\mu_{2j}^{+}, v_{2j}^{+})^{n_{j}^{+}} \mathcal{N}(w_{j}|\mu_{2j}^{-}, v_{2j}^{-})^{n_{j}^{-}}$

- where n_j^+ and n_j^- are the appearance counts of feature *j* in positive and negative samples. The advantages:
 - Multiple average likelihoods can summarize the data distributions more accurately.
 - Easy to deal with categorical features with high cardinality.
 - Can adjust sample weights, e.g., for positive and negative samples, by setting n_i^+ and n_i^- .

GBT outperformed OLSS on 504 features and VW on the entire 204, 327 features, among all the three test datasets.

Future Work

- Examination on millions of features, which are more often used in industry.
- ► Online A/B test on various sample weights settings.
- Distributed, asynchronous stochastic spike-and-slab inference.

szhe@purdue.edu, kclee@yahoo-inc.com, kzhang@nec-labs.com, neville@cs.purdue.edu