
Online Spike-and-slab Inference with Stochastic Expectation Propagation

Shandian Zhe1, Kuang-chih Lee2, Kai Zhang3, and Jennifer Neville1

1Purdue University 2Yahoo! Research 3NEC Laboratories America

Motivation

I Sparse learning is important to real applications with high dimensional data.
I Too many features → complicated model → huge training data → expensive

computational cost
I Small models are critical to real-time applications, such as online bidding for Ads.

displaying.

I Spike-and-slab prior is the golden standard for Bayesian sparse learning; compared with
popular L1 regularization approaches, it has an appealing selective shrinkage effect. Suppose
for each feature j , we have a weight wj and the spike-and-slab prior over wj is

p(sj) = Bern(sj|ρ0) = ρ
sj
0 (1− ρ0)1−sj, p(wj|sj) = sjN (wj|0, τ0) + (1− sj)δ(wj)

where δ(·) is a Dirac-delta function.

I Spike-and-slab prior is less popular, mainly due to the computational hurdle for posterior
inference, especially for large data—massive samples, very high dimensions.

OLSS: Online Spike-and-slab Inference

I We focus on linear classification model:

p(D,w, s|ρ0, τ0) =
d∏

j=1

Bern(sj|ρ0)
(
sjN (wj|0, τ0) + (1− sj)δ(wj)

) N∏

n=1

Φ(ynw
>
In x̂n)

where D = {(x1, y1), . . . , (xN, yn)} are data, w are classification weights, s are selection
indicators, and Φ(·) is the CDF of standard Gaussian distribution.

I We use the stochastic expectation propagation framework.
I Expectation propagation (EP). The general form of a joint distribution is

p(θ,D) = p0(θ)
∏

n

p(zn|θ).

EP approximates p(θ,D) with

q(θ) ∝ f0(θ)
∏

n

fn(θ).

EP maintains and iteratively refines each approximate terms fi with four steps: (1)
calculating the calibrating distribution, q−i(θ) ∝ q(θ)/fi(θ); (2) constructing a tilted
distribution ti(θ) ∝ q−i(θ)p(zi |θ); (3) projecting ti back into the exponential family,
q∗(θ) ∝ proj(ti(θ)), via moment matching; (4) updating the fi : f

new
i (θ) ∝ q∗(θ)/q−i(θ).

I Stochastic expectation propagation (SEP): using one average likelihood to summarize
the data.

q(θ) ∝ f0(θ)fa(θ)N

SEP sequentially process data samples and update the average likelihood fa in an online
fashion:

fa(θ)new =
(
fn(θ)fa(θ)N−1

) 1
N .

The corresponding updates in terms of the natural parameters are

λnew
a =

1

N
λn + (1− 1

N
)λa

I Our approximation for spike-and-slab models:
I We approximate the prior term, sjN (wj|0, τ0) + (1− sj)δ(wj), with
Bern(sj|αj)N (wj|µ1j, v1j).

I We use two average-likelihood terms, f +
a (wI) and f −a (wI), defined by

f +
a (wI) =

∏
j∈I N (wj|µ+

2j, v
+
2j) and f −a (wI) =

∏
j∈I N (wj|µ−2j, v−2j), for the positive and

negative samples, respectively.
I Fully factorization form:

q(w, s) ∝
d∏

j=1

Bern(sj|ρ0)Bern(sj|ρj)N (wj|µ1j, v1j)N (wj|µ+
2j, v

+
2j)

n+j N (wj|µ−2j, v−2j)n
−
j

where n+
j and n−j are the appearance counts of feature j in positive and negative samples.

I The advantages:
I Multiple average likelihoods can summarize the data distributions more accurately.
I Easy to deal with categorical features with high cardinality.
I Can adjust sample weights, e.g., for positive and negative samples, by setting n+

j and n−j .

is mainly due to the sparse categorical features, such as the product brand or the web site domain.
They often have a large cardinality and we have to use a sparse, long feature vector for representation.
Therefore, to avoid the unnecessary computation, we rewrite p(yn|xn,w) = �(ynw>

In
x̂n) where

In is the indexes of nonzero elements in xn and x̂n is the corresponding nonzero subvector. We
further assign the spike-and-slab prior over w (see (1)), and obtain the joint probability as follows:
p(D,w, s|⇢0, ⌧0) =

Qd
j=1 Bern(sj |⇢0)

�
sjN (wj |0, ⌧0) + (1� sj)�(wj)

�QN
n=1 �(ynw>

In
x̂n).

For tractable inference, we first approximate the prior term, sjN (wj |0, ⌧0) + (1� sj)�(wj), with
Bern(sj |↵j)N (wj |µ1j , v1j). Then, we use two average-likelihood terms, f+

a (wI) and f�
a (wI),

defined by f+
a (wI) =

Q
j2I N (wj |µ+

2j , v
+
2j) and f�

a (wI) =
Q

j2I N (wj |µ�
2j , v

�
2j), for the positive

and negative samples respectively. We then define the approximate posterior to be q(s,w) /Qd
j=1 Bern(sj |⇢0)Bern(sj |⇢j)N (wj |µ1j , v1j)

QN
n=1 f+

a (wIn
)1(yn=1)f�

a (wIn
)1(yn=�1). Hence,

q(w, s) / Qd
j=1 Bern(sj |⇢0)Bern(sj |⇢j)N (wj |µ1j , v1j)N (wj |µ+

2j , v
+
2j)

n+
j N (wj |µ�

2j , v
�
2j)

n�
j ,

and is fully factorized over features, where n+
j and n�

j are the appearance counts of feature j
in positive and negative samples, respectively. Note that unlike the standard SEP using only one
average-likelihood for all the data, we consider the different sample types and for each type, we
use a different average-likelihood. This has two advantages: first, the summarization of the data
likelihoods can be more accurate; and it opens a way to enhance SEP—that is, we can cluster the
data first, and for each cluster we use an average-likelihood, to better capture the shape of full data
distribution. Second, we can vary the weights for different class of samples, through the settings
of n+

j and n�
j . This can be very useful for applications with unbalanced samples. Take the online

advertising as an example. The number of clicked impressions (i.e., positive samples) are far less
than the non-clicks (negative samples). To save computation, we can collect all the positive samples
but subsample a comparable number of negative samples; then for training, we intentionally set large
{n�

j }j to maintain the same positive/negative ratio in the full data. This is equivalent to duplicate the
negative samples to simulate the original sample bias.

The algorithm, OLSS, sequentially processes data, each time a mini-batch. In each min-batch,
we calculate the approximate likelihoods for each positive and negative samples in parallel, then
update the corresponding average-likelihood terms for each feature j, i.e., N (wj |µ+

2j , v
+
2j) and

N (wj |µ�
2j , v

�
2j), following the way mentioned in Section 2. After every a few mini-batches, we update

the approximate prior terms, {Bern(sj |↵j)N (wj |µ1j , v1j)}j , with the current average-likelihoods.
The derivation of the updates is pretty standard, hence we omit the details to save space. The algorithm
is summarized in Algorithm 1.

After the training, we select all the features that have the posterior selection probabilities bigger than
1
2 , i.e., {j|q(sj = 1) > 1

2}. Then we use the selected feature weights for prediction.

Algorithm 1 OLSS(D, ⇢0, ⌧0, M, T, {n+
j , n�

j }j)

Random shuffle samples in D.
Initialize for each feature j: ⇢j = 0.5, µ1j = µ+

2j = µ�
2j = 0, v1j = v+

2j = v�2j = 106.
repeat

Collect a mini-batch of samples Bi with size M , where B+
i are B�

i denote the positive and
negative samples, and b+

ij and b�ij denote the appearance counts of feature j in B+
i and B�

i .
Calculate the approximate likelihood for each sample in Bi to obtain {N (wj |µjt, vjt)}j,t2Bi

Update the Gaussian terms for the average-likelihoods:

v+
2j

�1 b+ji

n+
j

P
t2B+

i
v�1

jt +
n+

j �b+ji

n+
j

v+
2j

�1
,

µ+
2j

v+
2j

 b+ji

n+
j

P
t2B+

i

µjt

vjt
+

n+
j �b+ji

n+
j

µ+
2j

v+
2j

,

v�2j

�1 b�ji

n�
j

P
t2B�

i
v�1

jt +
n�

j �b�ji

n�
j

v�2j

�1
,

µ�
2j

v�
2j

 b�ji

n�
j

P
t2B�

i

µjt

vjt
+

n�
j �b�ji

n�
j

µ�
2j

v�
2j

.

If T mini-batches have been processed, update {⇢j , µ1j , v1j}j for the approximate prior terms.
until all samples in D is passed.
return q(w, s) =

Q
j N (wj |µj , vj)Bern(sj |↵j), where vj =

�
v�1
1j + n+

j v+
2j

�1
+ n�

j v�2j

�1��1
,

µj = vj

�µ1j

v1j
+ n+

j

µ+
2j

v+
2j

+ n�
j

µ�
2j

v�
2j

�
, ↵j = �

�
��1(⇢0) + ��1(⇢j)

�
(�(·) is the logitic function).

3

Experiments

I Real CTR prediction task on Yahoo! Display ads platform.

I Training data: click logs between 07/15/2016 and 07/21/2016

I Testing data: click logs in 07/22/2016, 07/23/2016 and 07/24/2016.

I Feature number: 204, 327.

I Training and testing sizes: 1.8M , 133.7M , 116.0M , and 110.2M .

I Competing methods: online logistic regression in Vowpal Wabbit (VW), FTRL-proximal
(FTRLp).

I Sparsity achievement.

Table: The number of selected features v.s. the setting of ρ0.

ρ0 0.8 0.5 0.4 0.3 0.1 10−3 10−5 10−7

feature number 204,080 53,827 5,591 3,810 2,174 1,004 663 504
ratio (%) 99.9% 26.3% 2.7% 1.9% 1.1% 0.5% 0.3% 0.2%

I Predictive performance with different sparsity levels.

I Usage of the selected features. We used 504 features selected by OLSS and trained a
nonlinear classification model, Gradient Boosting Tree (GBT).

GBT outperformed OLSS on 504 features and VW on the entire 204, 327 features,
among all the three test datasets.

Future Work

I Examination on millions of features, which are more often used in industry.

I Online A/B test on various sample weights settings.

I Distributed, asynchronous stochastic spike-and-slab inference.

szhe@purdue.edu, kclee@yahoo-inc.com, kzhang@nec-labs.com, neville@cs.purdue.edu

