
Online Spike-and-slab Inference with Stochastic
Expectation Propagation

Shandian Zhe
Purdue Univesity

szhe@purdue.edu

Kuang-chih Lee
Yahoo! Research

kclee@yahoo-inc.com

Kai Zhang
NEC Labs America

kzhang@nec-labs.com

Jennifer Neville
Purdue Univesity

neville@cs.purdue.edu

Abstract

We present OLSS, an online algorithm for Bayesian spike-and-slab model infer-
ence, based on the recently proposed stochastic Expectation Propagation (SEP)
framework [7]. We use a fully factorized form to efficiently process high dimen-
sional features; further, we extend the standard SEP by incorporating multiple
approximate average likelihoods, each of which corresponds to a cluster of samples
(e.g., positive and negative ones). This not only better summarizes the data across
different regions, but also gives the flexibility to assign sample weights. On a
large-scale click-through-rate (CTR) prediction task, OLSS demonstrates excellent
sparsity and superior predictive performance to the popular methods in industry,
including Vowpal Wabbit [6] and FTRL-Proximal [8].

1 Introduction

Sparse learning is critical to real applications with high dimensional data, for example, classification
with a large number of features. On one hand, too many features will lead to a complicated model
and to avoid overfitting, we have to collect a huge amount of data and use many computing resources
for training, which is time consuming and computationally expensive; on the other hand, the trained
model can be ponderous and not handy for real-time applications. For example, a typical online
advertising system is required to perform a CTR prediction in 10-100 milliseconds; therefore, the
CTR model must be parsimonious.

Spike-and-slab prior [4] is an ideal approach for Bayesian sparse learning. Compared with traditional
L1 regularization, the spike-and-slab prior realizes an appealing selective shrinkage property. Specif-
ically, assume we have d features; for each feature j, we have a weight wj and the spike-and-slab
prior over wj is defined as follows:

p(sj) = Bern(sj |ρ0) = ρ
sj
0 (1− ρ0)1−sj , p(wj |sj) = sjN (wj |0, τ0) + (1− sj)δ(wj) (1)

where δ(·) is a Dirac-delta function. Here sj — a selection indicator sampled from a Bernoulli
distribution— decides what type of prior over wj : if sj is 1, meaning feature j is selected, the weight
wj is assigned a flat Gaussian prior with variance τ0 (slab component), corresponding to a mild
regularization; if otherwise sj is 0, meaning feature j is irrelevant, the weight wj is assigned a spike
prior centered at 0 (spike component), inducing a strong shrinkage effect.

Despite the amazing property, Bayesian spike-and-slab models are relatively less popular, mainly due
to the computational hurdle for posterior inference, especially for large data. Conventional Markov-
Chain Monte-Carlo sampling techniques converge very slowly for high dimensional problems;

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

standard Variational Bayes [5] or Expectation Propagation [9], although every efficient, cannot handle
massive samples due to the memory limit of a single computer.

Inspired by the recent stochastic Expectation Propagation framework (SEP) [7], we develop OLSS,
an online inference algorithm of Bayesian spike-and-slab models for feature selection; to the best
of our knowledge, this is the first algorithm that can deal with both a huge number of samples and
high dimensional features. Specifically, we first adopt a factorized form over the feature weights
so as to handle high dimensions, and to save computations for sparse categorical features. Second,
we extend the standard SEP, by using multiple approximate average-likelihoods, rather than one.
Each average-likelihood summarizes the information from a cluster of samples. In this way, data
distributions in different regions can be more accurately captured, at a negligible extra cost. In
addition, it provides a flexibility of assigning weights for samples in different clusters, say, positive
and negative samples.

We have applied OLSS for a real CTR prediction task. On the data with millions of samples, and
hundreds of thousands features, OLSS can greatly reduce the number of features to a few hundreds,
without sacrificing much prediction accuracy; on average, OLSS obtains a superior predictive
performance to the state-of-the-art methods in industry, including Vowpal Wabbit [6] and FTRL-
proximal [8]. Furthermore, the selected features by OLSS are proven very useful to construct more
advanced, nonlinear CTR prediction models.

2 Stochastic Expectation Propagation

Let us first briefly review EP [9, 10] and SEP [7]. Consider a probabilistic model parameterized by θ.
Given the data D = {z1, . . . , zN}, the joint probability is p(θ,D) = p0(θ)

∏
n p(zn|θ).To obtain

the exact the posterior p(θ|D), we have to calculate the marginal distribution p(D), which is usually
intractable. To address this problem, EP uses an exponential-family term fn(θ) to approximate
each likelihood p(zn|θ), and f0(θ) to the prior p0(θ), resulting an approximate posterior q(θ) ∝
f0(θ)

∏
n fn(θ). Using the property that the exponential family are close under multiplying and

dividing operations, EP cyclically refines each approximate term fi in the following four steps: (1)
calculating the calibrating distribution, q−i(θ) ∝ q(θ)/fi(θ); (2) constructing a tilted distribution
ti(θ) ∝ q−i(θ)p(zi|θ); (3) projecting ti back into the exponential family, q∗(θ) ∝ proj(ti(θ)), via
moment matching; (4) updating the term fi: fnewi (θ) ∝ q∗(θ)/q−i(θ).

EP often works well in practice. However, since it maintains an approximate likelihood term
fn(θ) for every sample n, it may fail when the samples are too many to be stored in memory. To
address this issue and make EP scalable for large data, SEP instead uses one average-likelihood
term, fa(θ), to summarize all the data likelihoods, and defines the approximate posterior to be
q(θ) ∝ f0(θ)fa(θ)N . By only keeping and updating f0 and fa, SEP greatly reduces the memory
usage. SEP further uses an online mechanism to update fa(θ). Specifically, given sample n, we
calculate the calibrating distribution by q−n(θ) ∝ q(θ)/fa(θ), and follow the same way as the
original EP to obtain an approximate likelihood, fn(θ); we then integrate fn(θ) into the updating of
fa(θ), by taking the (geometric) average over the approximate data likelihoods, where the likelihood
for sample n is represented by fn(θ) and all the others are represented by fa(θ). Therefore, we have

fa(θ)new =
(
fn(θ)fa(θ)N−1

) 1
N . Writing down the updates in terms of the natural parameters, we

have λnew
a = (1− 1

N)λa + 1
Nλn where λa and λn are for fa and fn respectively. We can see that

the natural parameters of fa is updated by a weighted combination of the old values and the new
version from the current sample. Further, we can use a mini-batch of samples {zn1 , . . . , znM

} to
achieve a larger move: λnew

a = 1
N

∑M
j=1 λnj + (1− M

N)λa.

3 Online Inference for Bayesian Spike-and-slab Models

Now, we present OLSS, our online inference algorithm for spike-and-slab models based on the
SEP framework. We focus on sparse linear models with spike-and-slab priors. Suppose we have a
dataset D = {(x1, y1), . . . , (xN , yn)}, where each xn is a d-dimensional feature vector and yn is
the response. Here we consider binary responses for the classification task, i.e., yn ∈ {+1,−1}. We
assume a d× 1 weight vector w, such that given xn, we have p(yn|xn,w) = Φ(ynw

>xn), where
Φ(·) is the CDF of standard Gaussian distribution. Note that in real applications, although xn can

2

be extremely high dimensional, they are often very sparse, i.e., most of the elements are zero. This
is mainly due to the sparse categorical features, such as the product brand or the web site domain.
They often have a large cardinality and we have to use a sparse, long feature vector for representation.
Therefore, to avoid the unnecessary computation, we rewrite p(yn|xn,w) = Φ(ynw

>
In
x̂n) where

In is the indexes of nonzero elements in xn and x̂n is the corresponding nonzero subvector. We
further assign the spike-and-slab prior over w (see (1)), and obtain the joint probability as follows:
p(D,w, s|ρ0, τ0) =

∏d
j=1 Bern(sj |ρ0)

(
sjN (wj |0, τ0) + (1− sj)δ(wj)

)∏N
n=1 Φ(ynw

>
In
x̂n).

For tractable inference, we first approximate the prior term, sjN (wj |0, τ0) + (1− sj)δ(wj), with
Bern(sj |ρj)N (wj |µ1j , v1j). Then, we use two average-likelihood terms, f+a (wI) and f−a (wI),
defined by f+a (wI) =

∏
j∈I N (wj |µ+

2j , v
+
2j) and f−a (wI) =

∏
j∈I N (wj |µ−2j , v

−
2j), for the posi-

tive and negative samples respectively. We then have the approximate posterior to be q(s,w) ∝∏d
j=1 Bern(sj |ρ0)Bern(sj |ρj)N (wj |µ1j , v1j)

∏N
n=1 f

+
a (wIn)1(yn=1)f−a (wIn)1(yn=−1). Hence,

q(w, s) ∝
∏d
j=1 Bern(sj |ρ0)Bern(sj |ρj)N (wj |µ1j , v1j)N (wj |µ+

2j , v
+
2j)

n+
j N (wj |µ−2j , v

−
2j)

n−
j ,

and is fully factorized over features, where n+j and n−j are the appearance counts of feature j
in positive and negative samples, respectively. Note that unlike the standard SEP using only one
average-likelihood for all the samples, we consider the different sample types and for each type, we
use a different average-likelihood. This has two advantages: first, the summarization of the data
likelihoods can be more accurate; and in general we can cluster the data first, then for each cluster
we use an average-likelihood, to better capture the shape of full data distribution. Second, we can
vary the weights for different class of samples, through the settings of n+j and n−j . This can be
very useful for applications with unbalanced samples. Take the online advertising as an example.
The number of clicked impressions (i.e., positive samples) are far less than the non-clicks (negative
samples). To save computation, we can collect all the positive samples but subsample a comparable
number of negative samples; then for training, we intentionally set large {n−j }j to maintain the same
positive/negative ratio in the original data. This is equivalent to duplicate the negative samples to
simulate the original sample bias.

The algorithm, OLSS, sequentially processes data, each time a mini-batch. In each min-batch,
we calculate the approximate likelihoods for each positive and negative samples in parallel, then
update the corresponding average-likelihood terms for each feature j, i.e., N (wj |µ+

2j , v
+
2j) and

N (wj |µ−2j , v
−
2j), following the way mentioned in Section 2. After every a few mini-batches, we update

the approximate prior terms, {Bern(sj |αj)N (wj |µ1j , v1j)}j , with the current average-likelihoods.
The derivation of the updates is pretty standard, hence we omit the details to save space. The algorithm
is summarized in Algorithm 1.

After training, we select all the features that have the posterior selection probabilities bigger than 1
2 ,

i.e., {j|q(sj = 1) > 1
2}. Then we use the selected feature weights for prediction.

Algorithm 1 OLSS(D, ρ0, τ0,M, T, {n+j , n
−
j }j)

Random shuffle samples in D.
Initialize for each feature j: ρj = 0.5, µ1j = µ+

2j = µ−2j = 0, v1j = v+2j = v−2j = 106.
repeat

Collect a mini-batch of samples Bi with size M , where B+
i are B−i denote the positive and

negative samples, and b+ij and b−ij denote the appearance counts of feature j in B+
i and B−i .

Calculate the approximate likelihood for each sample in Bi: {N (wj |µjt, vjt)}j,t∈Bi
.

Update the Gaussian terms for the average-likelihoods:

v+2j
−1 ← b+ji

n+
j

∑
t∈B+

i
v−1jt +

n+
j −b

+
ji

n+
j

v+2j
−1
,
µ+
2j

v+2j
← b+ji

n+
j

∑
t∈B+

i

µjt

vjt
+

n+
j −b

+
ji

n+
j

µ+
2j

v+2j
,

v−2j
−1 ← b−ji

n−
j

∑
t∈B−

i
v−1jt +

n−
j −b

−
ji

n−
j

v−2j
−1
,
µ−
2j

v−2j
← b−ji

n−
j

∑
t∈B−

i

µjt

vjt
+

n−
j −b

−
ji

n−
j

µ−
2j

v−2j
.

If T mini-batches have been processed, update {ρj , µ1j , v1j}j for the approximate prior terms.
until all samples in D is processed.
return q(w, s) =

∏
j N (wj |µj , vj)Bern(sj |αj), where vj =

(
v−11j + n+j v

+
2j

−1
+ n−j v

−
2j

−1)−1
,

µj = vj
(µ1j

v1j
+ n+j

µ+
2j

v+2j
+ n−j

µ−
2j

v−2j

)
, αj = σ

(
σ−1(ρ0) + σ−1(ρj)

)
(σ(·) is the logitic function).

3

Feature Number ×105
0.10.40.81.21.62

AU
C

0.775

0.785

0.795

0.805

OLSS
FTRLp
VW

(a) 07/22
Feature Number×105

0.10.40.81.21.62

AU
C

0.75

0.765

0.775

0.785

(b) 07/23
Feature Number×105

0.10.40.81.21.62

AU
C

0.76

0.77

0.78

0.79

(c) 07/24
07/22 07/23 07/24

AU
C

0.77

0.79

0.8

0.81
VW
OLSS
GBT

(d)

Figure 1: Prediction accuracy v.s. the number of features (a-c), and prediction of GBT trained on
504 features selected by OLSS (d). Note that VW in (a-c) uses all the features and does not perform
feature selection.

4 Experiment

We examined OLSS in a real CTR prediction task. We collected the training data from a 7 days’ click
logs generated by Yahoo! Display Ads platform, between 07/15/2016 and 07/21/2016. Then we
tested on the logs in 07/22/2016, 07/23/2016 and 07/24/2016. The number of features are 204, 327;
the size of training and testing data are 1.8M , 133.7M , 116.0M and 110.2M . For training, we
collected all the click impressions and subsampled a comparable number of non-clicks, while for
testing data, we used all the click and non-click impressions. Note that training CTR prediction
models with comparable clicks and non-clicks is common in online advertising systems [1]. We
compared with two state-of-the-art methods widely used in industry: online logistic regression in
Vowpal Wabbit (VW) without feature selection, and FTRL-proximal (FTRLp) with online feature
selection. For our approach, we set τ0 to 1.0, M to 100 and T to 1. We varied ρ0—the prior belief
about the ratio of selected features—to adjust the sparsity level; for VW we adopted the default
parameters, which turned out to perform best in prediction; FTRLp has four parameters, α, β, λ1 and
λ2, where {α, β} are used to control the per-coordinate learning rate, and {λ1, λ2} are the strengths
for L1 and L2 regularization; to choose the best parameters, we fixed L1 = 1.0 and L2 = 1.0 and
fine tuned {α, β} in a validation dataset sampled from the log in 07/23/2016. The best settings are
α = β = 0.1. Then we fixed λ2 to 1.0, adjusted λ1 and examined the sparsity and the predictive
accuracy (in our application, different choices of λ2 have little effect to the predictive performance) .

First, we examined how much sparsity OLSS can yield when varying ρ0. From Table 1, we can
see that big ρ0 encouraged a large number of features to be selected; when we decreased ρ0, OLSS
quickly pruned massive features, as expected. Finally, the number of features can be reduced to a few
hundreds, taking only 0.2% of the entire feature set.

Table 1: The number of selected features v.s. the setting of ρ0.

ρ0 0.8 0.5 0.4 0.3 0.1 10−3 10−5 10−7

feature number 204,080 53,827 5,591 3,810 2,174 1,004 663 504
ratio (%) 99.9% 26.3% 2.7% 1.9% 1.1% 0.5% 0.3% 0.2%

Next, we examined the predictive performance of OLSS and FTRL when selecting different number
of features. We report the area-under-curve (AUC) for all the three test datasets. As shown in Figure
1a-c, the prediction accuracy decreased when using less and less features for both OLSS and FTRL.
However, OLSS always outperformed FTRLp, in all sparsity levels. This is more significant when
smaller number of features were selected. In addition, compared with VW using all the features, our
method, OLSS, kept a superior predictive performance until the feature number became too small.
However, the accuracy drop of OLSS is much less than FTRLp.

Finally, to confirm the usefulness of the selected features, we trained a nonlinear classification model,
Gradient Boosting Tree (GBT) [2, 3], based on the 504 features selected by OLSS (when setting
ρ0 = 10−7). GBT has an excellent performance for CTR prediction [11] but is not scalable for
high dimensional features. We compared GBT with OLSS on the same 504 features, and with VW
using all the 204, 037 features. As shown in Figure 1d, GBT outperformed both OLSS and VW on
all the three test datasets. Therefore, the selected features by OLSS are useful not only for linear
classification models, but also for the advanced, nonlinear models. This enlightens another application
of sparse learning—that is, we can choose a small set of useful features, then based on which we can
construct feasible and more powerful models to further improve the prediction tasks.

4

References
[1] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang Zhang. Laser: A scalable

response prediction platform for online advertising. In Proceedings of the 7th ACM international
conference on Web search and data mining, pages 173–182. ACM, 2014.

[2] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[3] Jerome H Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis,
38(4):367–378, 2002.

[4] Edward I George and Robert E McCulloch. Approaches for Bayesian variable selection.
Statistica Sinica, pages 339–373, 1997.

[5] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An in-
troduction to variational methods for graphical models. Machine learning, 37(2):183–233,
1999.

[6] John Langford. Vowpal wabbit, 2013. URL http://hunch. net/vw.

[7] Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. Stochastic expectation
propagation. In Advances in Neural Information Processing Systems, pages 2323–2331, 2015.

[8] H Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems
and l1 regularization. In AISTATS, pages 525–533, 2011.

[9] Thomas P Minka. Expectation propagation for approximate Bayesian inference. In Proceedings
of the Seventeenth conference on Uncertainty in artificial intelligence (UAI), pages 362–369.
Morgan Kaufmann Publishers Inc., 2001.

[10] Matthias Seeger. Expectation propagation for exponential families. Technical report.

[11] Ilya Trofimov, Anna Kornetova, and Valery Topinskiy. Using boosted trees for click-through
rate prediction for sponsored search. In Proceedings of the Sixth International Workshop on
Data Mining for Online Advertising and Internet Economy, page 2. ACM, 2012.

5

	Introduction
	Stochastic Expectation Propagation
	Online Inference for Bayesian Spike-and-slab Models
	Experiment

