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Variable Clamping for Optimization-Based Inference

Junyao Zhao, Josip Djolonga, Sebastian Tschiatschek, Andreas Krause

Contributions Clamping with L-Field and Perturb-and-MAP

. We investigate the improvements obtained by variable L' F|e|d

clamping for two approximate inference techniques. T : :
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where B(f) Is the base polytope, which is well understood
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with the partition function

attained from L-Field for mul/ti-label log-supermodular models.

Theorem. [Informal] Clamping can only decrease the upper bound of the log-partition function
Z(f) — ZACV e—f(A) attained from Perturb-and-MAP for general binary models.

* #P-hard to do inference in such generic models
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 Assume: efficient minimization of f(A) T Z(A)

(2(A) = >, 4 % is an arbitrary modular function)

Clamping Strategies

KEY INSIGHT: Given that the bound is an optimization problem over B( f)
It might make sense to clamp those variables that can "vary" the most.

Variable Clamping

» |t builds on the observation that +  Observation: s; € [f(V) — f(V \1i}), f({i})], Vi,Vs € B(f)
Z=3 e—f(A) — S e—f(A) | 3 e—J(A) «  Strategy: choose the variable which maximizes the size of this range
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. )  Three different log-supermodular models: grid cuts, conditioned pairs, random covers.
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5 ) Figure 1: In the first three columns we show the effects on the estimated partition function (first row)

and marginals (second row). We can see that clamping improves the estimates on both Z and the
marginals. In last column we compare the proposed clamping strategies for L-Field. As evident from
the plots, bmr consistently outperforms the other proposed alternatives.



