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Abstract

While central to the application of probabilistic models to discrete data, the problem
of marginal inference is in general intractable and efficient approximation schemes
need to exploit the problem structure. Recently, there have been efforts to exploit the
optimization properties of the distribution to obtain principled inference methods
that can work in models of very large orders. In this paper, we first theoretically
prove that for binary log-supermodular models the bounds on the partition function
obtained by two of these approaches, Perturb-and-MAP and L-FIELD, can be
always improved by clamping a subset of the variables. Furthermore, we find that
for Perturb-and-MAP the bound also improves for general binary models, which are
not necessarily log-supermodular. Moreover, we provide a set of heuristic strategies
for choosing the clamping order and present experimental results showcasing the
improvements obtained by the proposed methods on several models.

1 Introduction
In this paper we consider models of the form P (x) = 1

Z(f) exp(−f(x)), where x ∈ {0, 1}n is a
binary random vector, f : {0, 1}n → R is an arbitrary energy function, and Z(f) is the partition
function. Unfortunately, computing Z is known to be #P-hard, even for pairwise models f(x) =
xTWx + aTx [1, 2], where W ∈ Rn×n and a ∈ Rn. To be in line with the existing literature, in the
remaining of this paper we will treat these distributions as equivalently being defined over subsets of
V = {1, 2, . . . , n} using the natural bijection x↔ {i | xi = 1} ≡ A ⊆ V , i.e. we will write them as
P (A) = 1

Z(F ) exp(−F (A)), where Z(F ) =
∑

A⊆V exp(−F (A)).

Of special interest are those distributions that allow for the efficient minimization of F (A) + z(A)
for any function z(A) =

∑
i∈A zi for some zi ∈ R. The functions of the form z(A) =

∑
i∈A zi

are known as modular, and they can be seen as the equivalent of linear functions in the discrete
domain—they are uniquely represented by a vector z ∈ Rn and will be treated as both modular
functions and vectors. Perhaps the most commonly used family that has the above property is the class
of log-supermodular distributions. Their energy has to satisfy F (A∪B)+F (A∩B) ≤ F (A)+F (B)
for all A,B ⊆ V . They can be minimized in polynomial time [3], and efficiently so in many cases [4,
5]. The above inequality implies a non-negative correlation between the variables [6], which also
explains why they are also sometimes called attractive. They have been extensively used in computer
vision for semantic image segmentation — both pairwise models (also known as graph-cuts) [7], but
also models with complicated higher-order potentials [8].

The problem of variational inference in log-supermodular models has been first addressed by Djolonga
and Krause [9], who have developed the L-FIELD variational inference methods. Recently, Shpakova
and Bach [10] have drawn an interesting connection between L-FIELD and the Perturb-and-MAP
inference method [11] (explained in more detail in §3). The main insight underlying Perturb-and-
MAP is that we can both approximate the marginals and obtain an upper bound on the partition
function by repeatedly optimizing a perturbed version of the energy function, i.e. f(x) + zTx for
randomly chosen functions z. In this paper we focus on the two approximate inference techniques
L-FIELD and Perturb-and-MAP and investigate the effect of clamping a subset of the variables on the
approximation properties.
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The idea of clamping (i.e, fixing the value) of random variables to improve approximate inference
techniques has been studied by Weller and Jebara [12] and Weller and Domke [13]. The basic approach
is as follows: given that Z(F ) =

∑
A⊆V e

−F (A) =
∑

A⊆V \{i} e
−F (A) +

∑
A⊆V \{i} e

−F (A∪{i}),
we can approximate each term separately and add up these approximations. Specifically, if we define
F+i : 2V \{i} → R and F−i : 2V \{i} → R as F+i(A) = F (A ∪ {i}) and F−i(A) = F (A), we have
that Z(F ) = Z(F+i) + Z(F−i). Hence, we have to perform inference in two separate models: F+i

where the clamped variable is always set to one (the element is always included), and F−i where
the variable is fixed to zero (the element is excluded). The important question that arises is if the
above strategy will always improve the approximation. In [12, 13], the authors have answered this
question in the affirmative for mean-field, tree-reweighted belief-propagation and traditional belief
propagation (for log-supermodular models). Unfortunately, these inference techniques can not be
easily used in models with higher order factors without additional assumptions. In this paper, we
close the gap, by showing that clamping always improves the estimates of the partition function for
Perturb-and-MAP and L-FIELD, methods which weakly depend on the model order.

2 Clamping with L-FIELD

Djolonga and Krause [9] proposed variational methods for optimizing both lower and upper bounds
on Z(F ). Their methods depend only on the submodularity of F , and they obtain their bounds by
exploiting the differential structure of submodular functions. Because submodular functions are
closed under clamping, i.e. F is submodular so are F+i and F−i (see e.g. [14])1. we can apply the
methods in the aforementioned paper to the subproblems of computing Z(F+i) and Z(F−i). In the
following sections, we show that for both bounds clamping can only improve the estimate of Z .

Minimizing the upper bound can be seen as a divergence minimization method [15], as it corresponds
to minimizing the Rényi divergence D∞(P ‖ Q) = log maxA⊆V P (A)/Q(A) [16] over all factor-
ized distributions Q(A) =

∏
i∈A qi

∏
i/∈A(1− qi), where qi ∈ [0, 1]. In the case of log-supermodular

distributions, this optimization problem can be equivalently rewritten as [15]

min
s∈B(F )

n∑
i=1

log(1 + e−si), where B(F ) = {s ∈ Rn | s(V ) = F (V ),∀A ⊆ V : s(A) ≤ F (A)}

is known as the base polytope of F and has been analyzed extensively in the literature on submodular
minimization [17, 14]. The optimal value of the above optimization problem will be denoted by
ẐU (F ). Because the optimization problem is smooth and we can efficiently solve linear programs
over B(F ) in time O(n log n) [18], we can optimize it using the Frank-Wolfe algorithm [19, 20].

Remember thatZ(F ) = Z(F+i)+Z(F−i). We propose to approximate this quantity with ẐU (F+i)+

ẐU (F−i), which is immediately seen to be an upper bound on Z(F ).

Theorem 2.1. For log-supermodular models we have Z(F ) ≤ ẐU (F+i) + ẐU (F−i) ≤ ẐU (F ).

The proof of this theorem is provided in the appendix. In the appendix we further show that the
extension [21] of the above bound to multi-label problems has the same property, i.e. clamping can
also only improve the estimate of the partition function. Moreover, in [9], the authors also use the
properties of submodular functions to obtain lower bounds on Z . Likewise, as proven in the appendix,
clamping can only improve the lower bounds.

Variable order selection. Now that we have shown that clamping can only improve the estimate,
we can proceed to the question on which variables we should clamp. Our strategies are based on the
following observation: given that the bound is an optimization problem over B(F ), it might make
sense to clamp those variables that can "vary" the most. We quantify this, using the observation that
all elements in B(F ) satisfy

si ∈ [F (V )− F (V \ {i}), F ({i})] (1)

for the i-th coordinate (see e.g. [17]). Actually, the bound is tight in the sense there are points that take
on both ends of the interval. Our experiments show that this range has a strong correlation with the

1Typically F+i is defined as F+i(A) = F (A)−F ({i}) to make sure that F+i is normalized as F+i(∅) = 0,
but this is of course w.l.o.g.
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improvement we can make by clamping variable i. The first heuristic that we propose is MaxRange,
that proposes for clamping the top k variables with the largest such intervals. In the experiments, we
observe that this simple method outperforms random choice. Moreover, we can adaptively apply this
strategy — instead of fixing all k variables to clamp in the beginning, we can first clamp the variable
with the largest interval and then recursively apply the same strategy to the resulting sub-problems.
We call this strategy BranchMaxRange, and it is what gave the best experimental results (explained
in more detail as Algorithm 1 in the appendix).

3 Clamping with Perturb-and-MAP

The idea behind this method is to execute the following procedure several times: (i) perturb the energy
by adding a random modular term, and (ii) find the MAP configuration under the perturbation. Then, if
we repeatedly perform the above steps, we can obtain both an upper bound ẐP (in expectation) on Z ,
and an estimate of the marginals (by treating the configurations found in (ii) as if they had come from
the true distributions). Formally, we have that logZ ≤ log ẐP (F ) = Ez[maxA⊆V z(A)− F (A)],
where each coordinate of z is sampled independently from a logistic distribution [22]. Then,

ẐP (F ) = exp(Ez[max
A∈V
{z(A)− f(A)}])

= exp(Ez[max{ max
A∈V \{i}

{z−i(A)− f(A)}, max
A∈V \{i}

{z−i(A) + zi − f(A ∪ {i})}}])

= exp(Ez[max{ max
A∈V \{i}

{z−i(A)− f(A)}, zi + max
A∈V \{i}

{z−i(A)− f(A ∪ {i})}}]).

(2)

If we clamp each variable separately, we will obtain the following estimate

Z(F ) = Z(F+i) + Z(F+i) ≤ ẐP (F+i) + ẐP (F+i)

= exp(Ez−i [ max
A∈V \{i}

{z−i(A)− f(A)}]) + exp(Ez−i [ max
A∈V \{i}

{z−i(A)− f(A ∪ {i})}])

(3)

where z−i denotes the restricted modular function over the ground set V \ {i}. The following
theorem, which holds without the assumption that F is submodular, shows that in expectation we
will always obtain a stronger bound.

Theorem 3.1. For binary models we have that Z(F ) ≤ ẐP (F+i) + ẐP (F−i) ≤ ẐP (F ).

4 Experiments

In this section we want to showcase the following: (1) demonstrate that clamping indeed improves the
bounds on the log-partition function, (2) analyze the effect on the estimated marginals, (3) compare
the performance of various variable selection strategies for L-FIELD. For (1) and (2), we run Perturb-
and-MAP (with 200 random samples, labelled pmap) and L-FIELD after 2 and 4 clamps. For (3),
we test different heuristics for variable selection: bmr (BranchMaxRange), nmr (NaiveMaxRange),
rand (random selection). Finally, to show that the strategy based on the intervals does make sense,
we also include the strategy that chooses variables with the smallest interval size, denoted by minr,
which we expect to perform poorly. We used the following models.

– Grid cuts. The first class of models we experiment on are grid-structured pairwise models, i.e.
P (A) ∝ exp(−

∑
{i,j}∈E βJA ∩ {i, j} = 1K−

∑
i zi), where E are the grid-structured edges. We

sampled β ∼ Unif([0, β]) and zi ∼ Unif([−1,+1]), i.e. P (A) is an attractive Ising model.

– Conditioned pairs. The model has the same functional form as before, but the graph is complete
and the edge weights are generated as follows. We first sample two centers from, from N ([3, 3], I)
and N ([−3,−3], I) respectively. Then, around each center we sample n points. These 2n points
{x1,x2, . . . ,x2n} are assigned to the elements, and the weight between elements i and j is set to
e−c‖xi−xj‖. Then, for k = 1, 2, . . . ,K, we perform inference on the posterior distribution after
conditioning that k elements from the first cluster are in A and k elements from the second cluster
are not contained in A.

– Random covers. Motivated by the Pn potentials from vision [8], we generate models with higher-
order potentials as follows. We first choose k subsets G1, G2 . . . , Gk of size m in V at random. Then,
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(a) 10× 10 Grid cuts
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(b) Cond. pairs (n = 50, c = 0.1)
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(d) 4× 4 Grid cuts
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(e) Cond. pairs (n = 20, c = 0.1)
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(f) R.c. (m = 10, α = 0.2, β = 1
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Figure 1: In the above plots we show the effects on the estimated partition function (first row)
and marginals (second row). We can see that clamping improves the estimates on both Z and the
marginals. Further experiments with different parameter settings can be found in Fig. 3 in appendix.
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Figure 2: Comparison of the proposed clamping strategies for L-FIELD. As evident from the plots,
bmr consistently outperforms the other proposed alternatives.

we use F (A) = β ·
∑k

i=1( |A∩Gi|
α

|Gi|α ) +
∑

i∈A zi, where zi ∼ Unif([−1, 1]), which is submodular for
α ∈ [0, 1] and β ≥ 0.

The results from different number of clampings are shown in Fig. 1, while the performance of the
different heuristics for choosing the order can be seen in Fig. 2. We can see that clamping does
improve the estimate on the partition faction, and significantly so for L-FIELD. The marginals
are likewise generally improved. We can also see that the proposed bmr heuristic outperforms the
proposed baselines. Moreover, note that if we use the reverse order (minr) we obtain results worse
than random, thus providing more evidence towards the hypothesis that the possible improvement is
related to the "variability" of the corresponding optimization variable.

5 Conclusion

We have shown that by clamping variables we can improve the Perturb-and-MAP and L-FIELD
approximate inference techniques — both in theory and in a set of experiments.
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6 Appendix

Algorithm 1: Branch-Max-Range
Input :f , V , number of clamping t
Output : Ẑ(f), approximate marginals p
if t == 0 then

return approx_method(f, V );
end
i = arg maxj∈V f({j})− (f(V )− f(V \ {j}));
(Ẑ(f+i), p+) = Branch-Max-Range(f+i, V \ {i}, t− 1);
(Ẑ(f−i), p−) = Branch-Max-Range(f−i, V \ {i}, t− 1);
Ẑ(f) = Ẑ(f+i) + Ẑ(f−i);

pi = Ẑ(f+i)
Ẑ(f)

;

for j ∈ V \ {i} do
pj = Ẑ(f+i)·p++Ẑ(f−i)·p−

Ẑ(f)
;

end
return (Ẑ(f), p);

In this appendix, we present the proof for all the main results in this paper. From now on, we notate two
operations that preserve submodularity, (a) contraction: FX(A) = F (X ∪A)−F (X), A ⊆ V \X ,
(b) restriction: FX(A) = F (A), A ⊆ X .

6.1 L-FIELD with Multi-label models

Instead of showing the proof for the binary case, we directly prove more general results for multi-
label models, and the theorem for the binary models immediately follows. We show how to handle
the general case where each variable can take one of L different values {1, 2, · · · , L}. We will
represent each random variable Xi by L distinct elements Vi = {vi,1, vi,2, · · · , vi,L} corresponding
to the values it can take. The idea is that if for example vi,5 is chosen, then this corresponds
to Xi taking on the value 5. This is also known as the 1-of-L encoding. To make sure that the
variable can take only a single value, we will add a constraint Mi that forces the distribution to
assign non-zero mass only to those configurations that select exactly one element from Vi. Formally
stated, Mi = {A : |A ∩ Vi| = 1} and our final constraint is M = ∩Ni=1Mi. The partition
function is Z(F ) =

∑
A∈M exp(−F (A)), and as before, we denote by ẐU (F ) its upper bound.

According to Formula (2) in [21], log ẐU (F ) = mins∈B(F )

∑N
i=1 log

∑L
j=1 exp(−si,j). Define

M−k = ∩Ni=1,i6=kMi and V−k = ∪Ni=1,i6=kVi.

Z(F ) =
∑
A∈M

exp(−F (A)) =

L∑
l=1

∑
A∈M,vk,l∈A

exp(−F (A)) =

L∑
l=1

∑
A∈V−k∩M−k

exp(−F (A ∪ {vk,l}))︸ ︷︷ ︸
Z(F+vk,l

)

(4)

We can calculate the upper bound of Z(F+vk,l), denoted by ẐU (F+vk,l), using the L-FIELD method,
namely log ẐU (F+vk,l) = mins∈B(F{vk,l})

∑N
i=1 log

∑L
j=1 exp(−si,j) − F ({vk,l}). Obviously

Z(F ) =
∑

l Z(F+vk,l) ≤
∑

l ẐU (F+vk,l). Hence
∑

l ẐU (F+vk,l) is a valid upper bound for the
partition function, and this is exactly the new upper bound we want to use for Z(F ) after clamping
variable k. The following theorem shows that this is a better upper bound than ẐU (F ).

Theorem 6.1. For a multi-label log-supermodular model, after clamping arbitrary variable k,∑
l ẐU (F+vk,l) ≤ ẐU (F ).
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To see this, we decompose the objective used for computing ẐU (F ), which is just the exponential of
the objective for log ẐU (F ) as follows:

exp(

N∑
i=1

log

L∑
l=1

e−si,l) =

N∏
i=1

(

L∑
l=1

e−si,l) =

L∑
l=1

(e−sk,l ·
∏
i6=k

(

L∑
j=1

e−si,j )) (5)

Define Ẑ l
U (F ) = mins∈B(F ) e

−sk,l ·
∏

i 6=k(
∑L

j=1 e
−si,j ), then we know

ẐU (F ) = min
s∈B(F )

L∑
l=1

(e−sk,l ·
∏
i6=k

(

L∑
j=1

e−si,j ))

≥
L∑

l=1

min
s∈B(F )

(e−sk,l ·
∏
i6=k

(

L∑
j=1

e−si,j ))

=
∑
l

Ẑ l
U (F )

(6)

We will prove a stronger result, namely ∀l, Ẑ l
U (F ) = ẐU (F+vk,l), and hence ẐU (F ) ≥∑

l Ẑ l
U (F ) =

∑
l ẐU (F+vk,l).

Lemma 6.2. Ẑ l
U (F ) = ẐU (F+vk,l).

Proof. This is equivalent to proving that log Ẑ l
U (F ) = log ẐU (F+vk,l). Later we will show that

log Ẑ l
U (F ), the minimum of −sk,l +

∑
i 6=k log

∑L
j=1(1 + e−si,j ) in B(F ), can still be achieved if

we fix sk,l = F ({vk,l}). We assume this is true, hence we can replace sk,l with F ({vk,l}) in B(F )
and get the following explicit form.

∑
vi,j∈A

si,j + F ({vk,l}) ≤ F (A ∪ {vk,l}), ∀A ⊂ V \ {vk,l}∑
vi,j∈A

si,j ≤ F (A), ∀A ⊆ V \ {vk,l}∑
vi,j∈V \{vk,l}

si,j + F ({vk,l}) = F (V )

Notice that the second constraint is redundant, because the first inequality requires ∀A ⊂ V \
{vk,l},

∑
vi,j∈A si,j ≤ F (A ∪ {vk,l}) − F ({vk,l}) and F (A ∪ {vk,l}) − F ({vk,l}) ≤ F (A) by

submodularity, and for the same reason the last equality fulfills the second inequality when A =
V \ {vk,l}. Thus we can remove the second constraint in above inequality system.
Now we write the explicit form of B(F{vk,l}) as follows.

∑
vi,j∈A

si,j ≤ F (A ∪ {vk,l})− F ({vk,l}), ∀A ⊂ V \ {vk,l}∑
vi,j∈V \{vk,l}

si,j = F (V )− F ({vk,l})

Observe that this is the same as B(F ) when si = F ({i}). Hence the feasible regions of two
minimization problem are exactly the same. Furthermore, since we fix sk,l = F ({vk,l}), the
objective of log Ẑ l

U (F ) changes into −F ({vk,l}) +
∑

i6=k log
∑L

j=1(1 + e−si,j ), which is again

the same as the objective of ẐU (F+vk,l). Therefore log Ẑ l
U (F ) = log ẐU (F+vk,l), which implies

Ẑ l
U (F ) = ẐU (F+vk,l).

Lemma 6.3. By adding sk,l = F ({vk,l}) to the constraint set, the result of the optimization problem
mins∈B(F )−sk,l +

∑
i 6=k log

∑L
j=1(1 + e−si,j ) will not change.

Proof. First we define g(s) =
∑

i 6=k log
∑L

j=1(1 + e−si,j )− sk,l. Then we have{ ∂g
∂sk,l

= −1
∂g

∂si,j
=

− exp(−si,j)∑L
j′=1

(1+exp(−si,j′ ))
> −1,∀vi,j ∈ V \ {vk,l}

(7)
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Hence it is easy to see exchange ∆ ≥ 0 between si,j and sk,l, i.e. s′k,l = sk,l + ∆, s′i,j = si,j −∆,
can only decrease the objective. Therefore, given optimal solution s∗, we can get a solution at
least as good as s∗ by setting s′k,l = s∗k,l + ∆ and s′i,j = s∗i,j − ∆ for arbitrary (i, j) 6= (k, l).
We can exploit this property to change s∗k,l into F ({vk,l}), but we need to guarantee that every
exchange results in a feasible solution. Hence we need to deal with exchange capacity ĉ(s; vk,l, e′) =
min{F (A) − s(A),∀A ⊇ {vk,l}, e′ /∈ A}(e′ denotes the element to exchange with vk,l). Let
Se′ ∪ {vk,l} be the set that achieves ĉ(s; vk,l, e′), we know e′ /∈ Se′ ∪ {vk,l}. We propose the
following procedure exchange, and we will prove later this algorithm will make s′k,l = F ({vk,l}).
Since we already proved that exchange always results in better solution, this will finish the proof.

procedure exchange():
Initiate U = V \ {vk,l}, s = s∗;
While U 6= ∅:

Arbitrarily pick e′ ∈ U ;
sk,l ← sk,l + ĉ(s; vk,l, e

′);
se′ ← se′ − ĉ(s; vk,l, e′);
U = U ∩ Se′

end;

We first show that after one exchange with e′ the new modular function s′ is tight at Se′ ∪ {vk,l}.

s′k,l = sk,l + ĉ(s; vk,l, e
′)

= sk,l + F (Se′ ∪ {vk,l})− s(Se′ ∪ {vk,l})
= sk,l + F (Se′ ∪ {vk,l})− s(Se′)− sk,l
= F (Se′ ∪ {vk,l})− s′(Se′)

⇒s′(Se′ ∪ {vk,l}) = F (Se′ ∪ {vk,l})

(8)

Because s′ is tight at Se′ ∪{vk,l}, the element picked next round must be the element in Se′ such that
the next exchange also results in a feasible solution, otherwise the next exchange will break the tight
upper bound for s′ at Se′ ∪ {vk,l} since we only increase s′k,l. This is why we let U = U ∩ Se′ in the
algorithm. It is also obvious that once s′ is tight at Se′ ∪ {vk,l}, it will always be tight at Se′ ∪ {vk,l}.
Moreover, notice that e′ /∈ Se′ but e′ ∈ U , hence the intersection operation always strictly decreases
the size of U in each round. Therefore, algorithm will terminate and U will definitely turn into ∅.
The final U is ∩e′Se′ , hence ∩e′(Se′ ∪ {vk,l}) = (∩e′Se′) ∪ {vk,l} = {vk,l}. Since the final s′ is
tight at each Se′ ∪ {vk,l} and it is well-known result that the intersection of tight sets is also tight.
Therefore the final s′ is tight at {vk,l}, i.e. s′k,l = F ({vk,l}), which completes the proof.

6.2 Clamping Improves the Lower Bound in Binary Models

From the proof of Lemma 4 in [9] we know that the lower bound of log partition function we
get from optimizing over bar supergradient is log ẐL(F ) = maxX∈V −F (X) +

∑
j∈X log(1 +

eF (V )−F (V \{j})) +
∑

j /∈X log(1 + e−F ({j})). After clamping i, we also apply this method to get the

lower bound for Z(F{i}) and Z(FV \{i}), denote them by ẐL(F{i}) and ẐL(FV \{i}) respectively.
It is obvious that Z(f) = e−F ({i}) · Z(F{i}) + Z(FV \{i}) ≥ e−F ({i}) · ẐL(F{i}) + ẐL(FV \{i}),
so if ẐL(F ) ≤ e−F ({i}) · ẐL(F{i}) + ẐL(FV \{i}), then e−F ({i}) · ẐL(F{i}) + ẐL(FV \{i}) is a
better lower bound.

Theorem 6.4. ẐL(F ) ≤ e−F ({i}) · ẐL(F{i}) + ẐL(FV \{i}).

Proof. We take the exponent of log ẐL(F ), then ẐL(F ) = maxX∈V e
−F (X)

∏
j∈X(1 +

eF (V )−F (V \{j}))
∏

j /∈X(1 + e−F ({j})). We split it into two cases. First, if i ∈ X∗, where X∗
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is the optimal element set for bar supergradient, we know

ẐL(F ) = max
X∈V

e−F (X)
∏

j∈X\{i}

(1 + eF (V )−F (V \{j}))(1 + eF (V )−F (V \{i}))
∏
j /∈X

(1 + e−F ({j}))

= max
X∈V

e−F (X)
∏

j∈X\{i}

(1 + eF (V )−F (V \{j}))
∏
j /∈X

(1 + e−F ({j}))

︸ ︷︷ ︸
A1

+ eF (V )−F (V \{i})−F (X)
∏

j∈X\{i}

(1 + eF (V )−F (V \{j}))
∏
j /∈X

(1 + e−F ({j}))

︸ ︷︷ ︸
B1

(9)

Otherwise, if i /∈ X∗

ẐL(F ) = max
X∈V \{i}

e−F (X)
∏
j∈X

(1 + eF (V )−F (V \{j}))
∏

j /∈X∪{i}

(1 + e−F ({j}))(1 + e−F ({i}))

= max
X∈V \{i}

e−F (X)
∏
j∈X

(1 + eF (V )−F (V \{j}))
∏

j /∈X∪{i}

(1 + e−F ({j}))

︸ ︷︷ ︸
A2

+ e−F (X)−F ({i})
∏
j∈X

(1 + eF (V )−F (V \{j}))
∏

j /∈X∪{i}

(1 + e−F ({j}))

︸ ︷︷ ︸
B2

(10)

Since ẐL(F{i}) = maxX∈V \{i} e
F ({i})−F (X∪{i}) ∏

j∈X(1 + eF (V )−F (V \{j}))
∏

j /∈X(1 +

e−F ({i,j})+F ({i})) and ẐL(FV \{i}) = maxX∈V \{i} e
−F (X)

∏
j∈X(1 +

eF (V \{i})−F (V \{i,j}))
∏

j /∈X(1 + e−F ({j})), we explicitly write the lower bound after clamping as
follows.

e−F ({i})ẐL(F{i}) + ẐL(FV \{i})

= max
X∈V \{i}

e−F (X∪{i})
∏
j∈X

(1 + eF (V )−F (V \{j}))
∏
j /∈X

(1 + eF ({i})−F ({i,j}))

︸ ︷︷ ︸
A

+ max
X∈V \{i}

e−F (X)
∏
j∈X

(1 + eF (V \{i})−F (V \{i,j}))
∏
j /∈X

(1 + e−F ({j}))

︸ ︷︷ ︸
B

(11)

We claim that if i ∈ X∗, A ≥ A1, B ≥ B1, hence A + B ≥ A1 + B1, and if i /∈ X∗,
B ≥ A2, A ≥ B2, hence A+B ≥ A2 +B2. If this is true, then the expected result follows.
LetX = X∗\{i} when i ∈ X∗, thenA1 = e−F (X∪{i}) ∏

j∈X(1+eF (V )−F (V \{j}))
∏

j /∈X∪{i}(1+

e−F ({j})). We compare A1 with A = e−F (X∪{i}) ∏
j∈X(1 + eF (V )−F (V \{j}))

∏
j /∈X(1 +

eF ({i})−F ({i,j})). Since F ({i})−F ({i, j}) ≥ −F ({j}) by diminishing return, it is easy to see A ≥
A1. On the other hand,B1 = eF (V )−F (V \{i})−F (X∪{i}) ∏

j∈X(1+eF (V )−F (V \{j}))
∏

j /∈X∪{i}(1+

e−F ({j})). We compare this with B = e−F (X)
∏

j∈X(1 + eF (V \{i})−F (V \{i,j}))
∏

j /∈X(1 +

e−F ({j})). Since F (V ) − F (V \ {i}) − F (X ∪ {i}) ≤ −F (X) and F (V ) − F (V \ {j}) ≤
F (V \ {i})− F (V \ {i, j}) by diminishing return, it follows that B ≥ B1.
Let X = X∗ when i /∈ X∗, then B2 = e−F (X)−F ({i}) ∏

j∈X(1 + eF (V )−F (V \{j}))
∏

j /∈X∪{i}(1 +

e−F ({j})). We compare this with A. Since −F (X) − F ({i}) ≤ −F (X ∪ {i}) and
−F ({j}) ≤ F ({i}) − F ({i, j}), A ≥ B2 follows. Moreover, A2 = e−F (X)

∏
j∈X(1 +

eF (V )−F (V \{j}))
∏

j /∈X∪{i}(1 + e−F ({j})), hence B ≥ A2 follows because F (V )− F (V \ {j}) ≤
F (V \ {i})− F (V \ {i, j}). This completes the proof.
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Figure 3: Additional experiments on random covers and conditioned pairs with different parameters.
Still we can see that clamping improves the estimates on both Z and the marginals.

6.3 Proof of Theorem 3.1

Proof.

ẐP (F+i) + ẐP (F−i)

ẐP (F )
= exp(Ez[( max

A∈V \{i}
{z−i(A)− f(A)} − ( max

A∈V \{i}
{z−i(A)− f(A ∪ {i})}+ zi))−])+

exp(Ez[( max
A∈V \{i}

{z−i(A)− f(A ∪ {i})}+ zi − max
A∈V \{i}

{z−i(A)− f(A)})−])

= exp(−Ez[( max
A∈V \{i}

{z−i(A)− f(A ∪ {i})} − max
A∈V \{i}

{z−i(A)− f(A)}+ zi)+])+

exp(Ez[( max
A∈V \{i}

{z−i(A)− f(A ∪ {i})} − max
A∈V \{i}

{z−i(A)− f(A)}+ zi)−])

= exp(−Ez[(zi −G(z−i))+]) + exp(Ez[(zi −G(z−i))−])

= exp(−Ez−i [

∫ +∞

G(z−i)

p(zi) · (zi −G(z−i))dzi]) + exp(Ez−i [

∫ G(z−i)

−∞
p(zi) · (zi −G(z−i))dzi])

= exp(Ez−i [− log(1 + e−G(z−i))]) + exp(Ez−i [− log(1 + eG(z−i))])

≤ Ez−i [
1

1 + e−G(z−i)
] + Ez−i [

1

1 + eG(z−i)
] by Jensen’s inequality,

= Ez−i [
1

1 + e−G(z−i)
+

1

1 + eG(z−i)
] by linearity of expectation,

= 1,
(12)

where we define G(z−i) = maxA∈V \{i}{z−i(A)− f(A)} −maxA∈V \{i}{z−i(A)− f(A ∪ {i})}
for ease of readability.
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