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Contribution
•We propose a Density-Preserving Hierarchical EM (DPHEM) algorithm

to reduce a Gaussian Mixture Model (GMM) by maximizing a variational
lower bound of the expected log-likelihood of a set of virtual samples.

•We propose an efficient algorithm for approximating an arbitrary likeli-
hood function as a sum of scaled Gaussian (SSG).

•We apply an unified recursive Bayesian filtering framework with arbitrary
likelihood to visual tracking, where the posterior is represented as a GMM.

Recursive Bayesian Inference
•Goal

– Calculate the posterior distribution of latent state variable xt conditioned on all
observations so far y1:t = {y1, · · · , yt}.

• First-order Markov Framework

– Predict the current state xt using the previous posterior distribution p(xt−1|y1:t−1)
and transition model p(xt|xt−1):

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (1)

– Factor in the current observation yt using the observation model p(yt|xt):

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1). (2)

– We model the posterior p(xt|y1:t) as a GMM, and likelihood p(yt|xt) as a SSG.

– The number of components in the GMM posterior increases in each iteration, and
we use DPHEM to reduce the GMM to a manageable size.

• Framework on Visual Tracking

– State xt is the target position; p(yt|xt) is the score from the observation model.
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Density-Preserving Hierarchical EM Algorithm
•Goal

– Reduce the number of components in a GMM p(y|Θ(b)) =
∑Kb
i=1 π

(b)
i p(y|θ(b)

i ) to

p(y|Θ(r)) =
∑Kr
j=1 π

(r)
j p(y|θ(r)

j ) with Kr � Kb.

• Principle

– Define a set of i.i.d. virtual samples Y = {y1, y2, · · · , yN} with each yn ∼ Θ(b).

– The reduced model Θ(r) is obtained by maximizing the expected log-likelihood of
the reduced model Θ(r) with respect to the virtual samples,

J (Θ(r)) = EY |Θ(b) [log p(Y |Θ(r))] =
∑
i

π
(b)
i E

Y |θ(b)i

[log p(Y |Θ(r))].

•Variational Lower Bound

JDP (Θ(r)) = max
zij

∑
i

∑
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π
(b)
i zij

{
log

π
(r)
j

zij
+NE
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[log p(y|θ(r)j )]

}
≤ J (Θ(r)).

• Solution for GMMs

– E-Step:
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– M-Step:
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• Comparison with Other Simplifying Algorithms

– HEM: component clustering [Vasconcelos & Lippman, NIPS’98].

– VKL: minimize the variational upper-bound of KLD [Brubaker, et. al, TPAMI’16].

– L2U: minimize the L2-norm upper-bound [Zhang & Kwok, TNN’10].

(a1) Base Mixture (a2) HEM (a3) DPHEM
(KL=0.091) (KL=0.035)

(b1) Base Mixture (b2) VKL (b3) DPHEM
(KL=0.064) (KL=0.030)

(c1) Base Mixture (c2) L2U (c3) DPHEM
(KL=0.142) (KL=0.096)

Lower-bound Likelihood Approximation
•Goal

– Approximate arbitrary likelihood function f(x) = p(y|x) with a sum of scaled

Gaussian (SSG) f(x) =
∑
k f

(k)(x), where f (k)(x) is a scaled Gaussian.

• Iterative Fitting of f (k)(x)

– Residual set D(k) = {(xi, ri)}Ni=1, where ri = pi− f (k−1)(xi), ∀i (Initially, ri = pi).

– Calculate log-residuals, `i = log ri, and find maximum, m = argmaxi `i.

– Anchor the peak of f (k)(x) to highest point in log-space (xm, `m),

h(k)(x) = −(x− xm)TWk(x− xm) + `m, f (k)(x) = exp(h(k)(x)).

– Find the precision matrix Wk by minimizing the squared error, while ensuring
h(k)(x) is a lower-bound to the residuals,

W ∗k = argmin
Wk

1

2

N∑
i=1

(`i − h(k)(xi))
2 s.t. `i − h(k)(xi) ≥ 0,∀i.

•Diagonal Precision

– Assuming W = diag(w) results in a constrained least-squares problem:

w∗ = argmin
w

1

2

N∑
i=1

(˜̀
i + wT x̃i)

2 s.t. ˜̀
i + wT x̃i ≥ 0, ∀i, w ≥ 0,

where x̃i = (xi − xm)2 is the element-wise square difference, and ˜̀
i = `i − `m.

• Example

– ∆ indicates calculation of the residuals: ri = p(yi|xi)− f (k)(xi).

Experiments
• Synthetic 2d GMM: reduce randomly-generated GMMs with 2,500 components.

•Visual Tracking: tracking with recursive Bayesian inference on 50 video sequences [Y.Wu et al. CVPR’13].

• Belief Propagation: use GMM potentials on 4-node graph without sampling.
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