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Background

•Latent variable models are powerful tools for learning about the under-
lying structure of a dataset in an unsupervised setting
•Learning is intractable in most complex (e.g. non-Gaussian) models.

Double intractability:

1. The posterior distribution is intractable, i.e. we cannot compute the
normalizer for the latent variables: Z(θ )z|x =

∫
p(x, z)dz

2. For some latent variable models the joint distribution is only available
up to proportionality:

p(x, z) =
1

Z(θ )
p̃(x, z), where Z(θ ) =

∫
p̃(x, z)dxdz

→ Variational algorithms are infeasible since we do not have access to the
normalized log-joint.

Score matching (SM)

•Score matching (Hyvarinen, 2005): method for estimating non-
normalised statistical models without latent variables
•The explicit score matching objective function:

J(θ ) = Ex
[
‖∂x log p∗(x)− ∂x log pθ(x)‖2

]
Where p∗(x) is the true density and pθ(x) is the model density.
•Hyvarinen showed that it is equivalent to minimising the following cost

function:

J̃(θ ) = Ex

[
∂

2
x log pθ(x) +

1

2
(∂x log pθ(x))

2

]
Note that:
– It depends on the true density p(x) only through its expectation, which

can be evaluated by summing over data samples
–The score function, ∂x log pθ(x) does not depend on the unknown nor-

malizer

Score matching for latent variable models

•For energy based models of the form: p(x, z) ∝ exp(−Eθ(x, z))

•The score function can be expressed as an expectation:

∂x log pθ(x) =

∫
p(z|x)(−∂xE(x, z))dz

•The score matching objective can be rewritten (Swersky et al., 2011):

J(θ ) =
∑

x

∑
i

−1

2
〈∂xiEθ(x, z)〉2z|x + 〈(∂xiE(x, z))

2〉z|x − 〈∂ 2
xi
Eθ(x, z)〉z|x

Exponential family

•Jointly exponential family model:

p(x, z) = exp
(
θ

TS(x, z)− A(θ )
)

where θ : natural parameter vector, S(x, z): sufficient statistic
•Useful property: ∇θA(θ ) = 〈S(x, z)〉x,z
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SM for doubly intractable models

•The exact SM objective for jointly exponential family models:

J(θ ) =
∑

x

∑
i

−1

2

〈
θ

T
∂xiS(x, z)

〉2

z|x+〈
(
θ

T
∂xiS(x, z)

)2〉z|x+〈θ T
∂

2
xi
S(x, z)〉z|x

•We can propagate derivatives wrt. θ into the expectations without
knowing the normaliser of p(z|x) or p(x, z) by using the property of exp.
family:

∇θ log p(z|x) = S(x, z)− 〈S(x, z)〉z|x
•The posterior p(z|x) appears in the resulting gradient ∇θJ(θ ) only in

terms of its expectations.
•We approximate these integrals using a Hamiltonian Monte Carlo sam-

pler (Hoffman et al., 2011)

Experiments

•Rectified latent Gaussian model defined as:

p(z) ∝ N (z|0,Σ)
∏

l

Θ(zl)

p(x|z) = N (Wz,σ 2I)

•Sufficient statistics: S(x, z) = vec
[
xTx, xzT , zzT

]
• In general, the normalizer for the joint model cannot be computed ana-

lytically.
• z ∈ R2

+, x ∈ R2, we learn Σ,W,σ

Contours of learned and true densities

a b c

Total variation distance
•Empirical distance between two

densities:

δ (P,Q) = sup
x
|P(x)−Q(x)|

•Computed between pairs of data
sets generated from the true and
learned models (green) and be-
tween two data sets coming from
the true model (blue)

a b c
0.00

0.01

0.02

0.03

0.04

0.05

T
o
ta

l 
v
a
ri

a
ti

o
n
 d

is
ta

n
ce

True

Estimated

Summary

•Score matching can be applied to doubly intractable jointly exponential
family models
•SM allows for learning flexible latent variable models with arbitrary suf-

ficient statistics
•No need for fixed form approximations of the posterior distribution
• In contrast to the Boltzmann machine learning rule or contrastive di-

vergence, Monte Carlo simulation is only required for sampling from the
posterior, not from the joint distribution
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