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Background SM for doubly intractable models

e | atent variable models are powerful tools for learning about the under- e The exact SM objective for jointly exponential family models:

lying structure of a dataset in an unsupervised setting e 1 : :
e Learning is intractable in most complex (e.g. non-Gaussian) models. J(0) = L L -5 <9T3x,-S(X, Z)>Z|x+<(9T5’x,-S(X, 2)) )t (07928 (x, 2)) 11
Double intractability: o
1. The posterior distribution is intractable, i.e. we cannot compute the e We can propagate derivatives wrt. 6 into the expectations without

normalizer for the latent variables: Z(0),, = [ p(x,z)dz knowing the normaliser of p(z|x) or p(x,z) by using the property of exp.
2. For some latent variable models the joint distribution is only available family:

up to proportionality: Vi log p(z|x) = S(x,2) — (S(x,2)) 4

p(x. 7) = Z(le)ﬁ(xv 7). where Z(6) — /ﬁ(X, 7)dxdz e [he posterior p(z|x) appears in the resulting gradient VJ(0) only in
terms of its expectations.

— Variational algorithms are infeasible since we do not have access to the o We approximate these integrals using a Hamiltonian Monte Carlo sam-
normalized log-joint. pler (Hoffman et al., 2011)

Score matching (SM)

e Rectified latent Gaussian model defined as:

p(z) x N(z10,5) [ [ 0z)
[

e Score matching (Hyvarinen, 2005): method for estimating non-
normalised statistical models without latent variables
e [ he explicit score matching objective function:

J(8) = E, [||9slog p*(x) — 0, log pe(x)||” plxlz) = N(Wz,671)

o Sufficient statistics: S(x,z) = vec [xTx,xZT,ZZT]

e In general, the normalizer for the joint model cannot be computed ana-
lytically.
ez € R, x € R, we learn ¥, W, o

Where p*(x) is the true density and pg(x) is the model density.
e Hyvarinen showed that it is equivalent to minimising the following cost
function:

' 1
J(8) = Ex | 97 10g pe(x) + 5 (dklog pe(x))

Note that:

— |t depends on the true density p(x) only through its expectation, which
can be evaluated by summing over data samples

— The score function, dylog pg(x) does not depend on the unknown nor-
malizer

Score matching for latent variable models

e For energy based models of the form: p(x,z) oc exp(—Eg(x,2))
e [ he score function can be expressed as an expectation: e Empirical distance between two
densities:

9, log po(x) — / P(el)(— B, (x, 2))dz P 0 sl 0wl T T E
P Q) =sup|Px)—0Qx ‘ '

o
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e The score matching objective can be rewritten (Swersky et al., 2011):

ation distance

e 1 e Computed between pairs of data £..|
J(0) = L L -5 (0 Eg(x, z))Zx + {(dE(x, Z))2>z|x — (0:Eg(%x,2)) 21 sets generated from the true and 3, |

X learned models (green) and be- ~
tween two data sets coming from
the true model (blue)

e Score matching can be applied to doubly intractable jointly exponential
where 0: natural parameter vector, S(x, z): sufficient statistic family models

o Useful property: VgA(0) = (S(x,2))x; e SM allows for learning flexible latent variable models with arbitrary suf-

ficient statistics

o need for fved form approsimations of the posterorditibtion
e In contrast to the Boltzmann machine learning rule or contrastive di-

al va

0.00

Exponential family

e Jointly exponential family model:

p(x,z) = exp (87 S(x,2) — A(6))
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