

Training Deep Gaussian Processes with Sampling

Keyon Vafa

Columbia University; keyon.vafa@columbia.edu

Summary

- Deep Gaussian Proceses (deep GPs) are the composition of Gaussian Processes (GPs).
- We propose a stochastic gradient training scheme that uses sampling and pseudo data.
- Experiments show that deep GPs are well-suited to fit non-stationary functions.

Deep Gaussian Processes

A deep Gaussian Process (deep GP) is the composition of Gaussian Processes (GPs):

$$\mathbf{f}^{(1:L)}(\mathbf{x}) = \mathbf{f}^{(L)}(\mathbf{f}^{(L-1)}(\dots \mathbf{f}^{(2)}(\mathbf{f}^{(1)}(\mathbf{x}))\dots))$$
where $f_d^{(I)} \sim \mathcal{GP}\left(0, k_d^{(I)}(\mathbf{x}, \mathbf{x}')\right)$ for $f_d^{(I)} \in \mathbf{f}^{(I)}$.

Qualities of a deep GP:

- Standard GPs require non-stationary kernels to model non-stationary functions.
- Deep GPs compose various kernels, can thus capture non-stationarity.
- They can be viewed as deep neural networks with alternating infinite-dimensional hidden layers.

Figure 1: A simple two-layer deep GP where every layer has one dimension.

Figure 2: Draws from a GP, two deep GPs, and a BNN.

Inference

It is intractable to evaluate $P(y|X,\theta)$, so we propose a stochastic gradient descent approximate algorithm, which uses two central ideas:

- We **sample** predictive means and covariances to approximate the marginal likelihood, and use automatic differentiation techniques and the reparameterization trick to evaluate gradients.
- We use the Fully Independent Training Conditional (FITC) approximation, which incorporates training samples that may not be in the original data (pseudo data), at each layer.

As an example, for the 2-layer deep GP in Figure ??, we would like to learn:

- The pseudo data for each layer.
- The kernel parameters for f and g.

To evaluate the log-likelihood at our current parameter estimates,

- 1. Sample values from the hidden layer, **H**, given our inputs, **X**, using the FITC approximation.
- 2. Use each sample $\mathbf{\tilde{H}}'$ to approximate the FITC GP log-likelihood of the outputs, \mathbf{y} , at the last level.
- 3. Use automatic differentiation and the reparameterization trick to evaluate gradients.

Advantages of this method:

- It allows for automatic differentiation, giving it a "black-box" nature.
- Unlike existing methods, it can extend to arbitrary kernels.
- It is intuitive to understand and implement.

Experiments

For a noisy step function, we train various GP architectures and compare them to a Bayesian Neural Network (BNN).

• Deep GPs capture non-stationarity by composing two GPs with varying kernels.

Experiments (continued)

Figure 3: The red 'x's denote the data points, and the black curves denote 2000 posterior draws for each model, 5 of which are randomly colored for emphasis.

• The uncertainty outside the input space for deep GPs better captures our true beliefs than the BNN.

We run an experiment comparing prediction quality on noisy step function for 1-, 2-, and 3-layer deep GPs (where each hidden layer has one unit) with varying sizes of our data set.

- Occasionally deeper models yield poor predictive performance.
- Overfitting not an issue. Instead, optimization becomes more difficult for deeper models, as they are prone to poor local optima.
- We performed 10 random restarts for each setting, choosing the trial with the largest train log-likelihood.

Figure 4: Test log-likelihood per data in the step function experiment.

Experiments (continued)

Figure 5: Predictive draws for toy non-stationary data.

Additionally, we create toy non-stationary data and fit it with various architectures. In Figure ??, we see

- Single-layer GP can only recover a single length scale, so the curvature is constant.
- Deep GP and BNN yield predictive draws that are highly-varying in the outside regions, and mostly flat in the intermediate region.
- BNN draws and uncertainty are spikier than deep GP.

Conclusion

- Deep GPs combine the deep architecture of BNNs with the probabilistic properties of standard GPs.
- While our proposed algorithm is easy to implement and can extend to arbitrary kernels, it is difficult to optimize.
- When deeper models successfully train, they achieve a higher predictive performance than shallower models.