
Training Deep Gaussian Processes with Sampling
Keyon Vafa

Columbia University; keyon.vafa@columbia.edu

Summary

• Deep Gaussian Proceses (deep GPs) are the
composition of Gaussian Processes (GPs).

• We propose a stochastic gradient training
scheme that uses sampling and pseudo data.

• Experiments show that deep GPs are
well-suited to fit non-stationary functions.

Deep Gaussian Processes

A deep Gaussian Process (deep GP) is the composi-
tion of Gaussian Processes (GPs):

f(1:L)(x) = f(L)(f(L−1)(. . . f(2)(f(1)(x)) . . . ))

where f
(l)
d ∼ GP

(
0, k

(l)
d (x, x′)

)
for f

(l)
d ∈ f(l).

Qualities of a deep GP:

• Standard GPs require non-stationary kernels to
model non-stationary functions.

• Deep GPs compose various kernels, can thus
capture non-stationarity.

• They can be viewed as deep neural networks
with alternating infinite-dimensional hidden
layers.

ynhnxn
f g

Figure 1: A simple two-layer deep GP where every layer has one dimension.

f(
x
)

1-Layer GP 2-Layer Deep GP

x

f(
x
)

3-Layer Deep GP

x

3-Layer BNN

Figure 2: Draws from a GP, two deep GPs, and a BNN.

Inference

It is intractable to evaluate P(y|X,θ), so we propose
a stochastic gradient descent approximate algorithm,
which uses two central ideas:

• We sample predictive means and covariances
to approximate the marginal likelihood, and use
automatic differentiation techniques and the
reparameterization trick to evaluate gradients.

• We use the Fully Independent Training
Conditional (FITC) approximation,
which incorporates training samples that may
not be in the original data (pseudo data), at
each layer.

As an example, for the 2-layer deep GP in Figure ??,
we would like to learn:

• The pseudo data for each layer.

• The kernel parameters for f and g .

To evaluate the log-likelihood at our current parame-
ter estimates,

1. Sample values from the hidden layer, H, given
our inputs, X, using the FITC approximation.

2. Use each sample H̃
j

to approximate the FITC
GP log-likelihood of the outputs, y, at the last
level.

3. Use automatic differentiation and the
reparameterization trick to evaluate gradients.

Advantages of this method:

• It allows for automatic differentiation, giving it
a “black-box” nature.

• Unlike existing methods, it can extend to
arbitrary kernels.

• It is intuitive to understand and implement.

Experiments

For a noisy step function, we train various GP ar-
chitectures and compare them to a Bayesian Neural
Network (BNN).

• Deep GPs capture non-stationarity by
composing two GPs with varying kernels.

Experiments (continued)

Figure 3: The red ‘x’s denote the data points, and the black curves denote

2000 posterior draws for each model, 5 of which are randomly colored for

emphasis.

• The uncertainty outside the input space for deep
GPs better captures our true beliefs than the
BNN.

We run an experiment comparing prediction quality
on noisy step function for 1-, 2-, and 3-layer deep
GPs (where each hidden layer has one unit) with
varying sizes of our data set.

• Occasionally deeper models yield poor predictive
performance.

• Overfitting not an issue. Instead, optimization
becomes more difficult for deeper models, as
they are prone to poor local optima.

• We performed 10 random restarts for each
setting, choosing the trial with the largest train
log-likelihood.

Number of Data Points 1 Layer 2 Layers 3 Layers

50 .44 −.03 1.27
100 .23 .54 −.36
200 −.11 .71 .80
Figure 4: Test log-likelihood per data in the step function experiment.

Experiments (continued)

Figure 5: Predictive draws for toy non-stationary data.

Additionally, we create toy non-stationary data and
fit it with various architectures. In Figure ??, we see

• Single-layer GP can only recover a single length
scale, so the curvature is constant.

• Deep GP and BNN yield predictive draws that
are highly-varying in the outside regions, and
mostly flat in the intermediate region.

• BNN draws and uncertainty are spikier than
deep GP.

Conclusion

• Deep GPs combine the deep architecture of
BNNs with the probabilistic properties of
standard GPs.

• While our proposed algorithm is easy to
implement and can extend to arbitrary kernels,
it is difficult to optimize.

• When deeper models successfully train, they
achieve a higher predictive performance than
shallower models.


