
Training Deep Gaussian Processes with Sampling

Keyon Vafa
Columbia University

keyon.vafa@columbia.edu

Abstract

In this workshop paper, we explore deep Gaussian processes (deep GPs), a class
of models for regression that combines Gaussian processes (GPs) with deep ar-
chitectures. Exact inference on deep GPs is intractable, and while variational
approximation methods have been proposed, these models are difficult to imple-
ment and do not extend easily to arbitrary kernels. We propose a stochastic gradient
algorithm which relies on sampling to circumvent the intractability hurdle and uses
pseudo data to ease the computational burden. To illustrate the model properties,
we train various deep architectures on a noisy step-function and toy non-stationary
data. By comparing the predictive distributions of each model, we show that deep
GPs are well-suited to fit non-stationary functions.

1 Introduction

In recent years, Gaussian processes (GPs) have become one of the most popular nonparametric
Bayesian models for supervised learning [10]. There are many advantages of using a probabilistic
model like a GP for regression. For one, we can evaluate the marginal likelihood of the model,
making model selection a numerically tractable task. Additionally, overfitting is seldom a problem
due to the lack of parameters that need to be estimated [10]. Finally, by using an appropriate kernel,
we can approximate a wide range of functions.

Under certain conditions, a GP can be viewed as a neural network with a single infinite-dimensional
layer of hidden values [8]. Thus, it seems natural to combine the probabilistic advantages of GPs with
the deep architectures of neural networks. Deep Gaussian processes (deep GPs) are intuitively an
extension of GPs to multiple layers, and thus can be viewed as a deep neural network with multiple
infinite-dimensional hidden layers [1].

2 Deep Gaussian Processes

Formally, we define a deep Gaussian Process as the distribution over functions constructed by
composing GPs. We assume that each function is drawn independently, and that data is generated by
the following process [4]:

f (1:L)(x) = f (L)(f (L−1)(. . .f (2)(f (1)(x)) . . . ))

where f (l)
d ∼ GP

(
0, k

(l)
d (x,x′)

)
for f (l)

d ∈ f
(l).

As a concrete example, we focus on the simplest type of deep GP, with a one-dimensional input, xn, a
one-dimensional hidden unit, hn, and a one-dimensional output, yn. This two-layer network consists
of two GPs, f and g. Specifically, hn = f(xn) and yn = g(hn), where f ∼ GP(0, k(1)(x, x′)) and
g ∼ GP(0, k(2)(h, h′)). Because each GP is allowed to have different hyperparameters, note that the
covariance matrices correspond to different kernels. The graphical representation of this model is
depicted in Figure 1.
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Figure 1: A graphical representation of a simple two-layer deep GP where every layer has one
dimension.

One advantage of using a deep GP prior over a standard GP is that deep GPs can model non-stationary
functions without the use of a non-stationary kernel. If the shape of a function changes along
the input space, a standard GP would require a non-stationary kernel to capture these differences.
However, because a deep GP is the composition of GPs with different kernel parameters, it can model
non-stationary functions.

3 Inference

Ideally, a Bayesian treatment of a deep GP would allow us to integrate out the hidden function values
to evaluate P (y|X,θ). Unfortunately, this computation, which involves the integrals of Gaussians
with respect to kernel functions, is intractable [3].

We introduce a stochastic gradient descent algorithm, which trains a deep GP by relying on two
central ideas. First, because we cannot integrate out hidden function values, we rely on sampling
predictive means and covariances to approximate the marginal likelihood. Using these samples, we
use automatic differentiation techniques and the reparameterization trick from Kingma et al. [7] to
evaluate the gradients and optimize our objective.

Second, if we fit every GP in our model without any approximations, the computational complexity
for L layers and H hidden units per layer is O(N3LH). To ease the computational burden of our
model, we use the Fully Independent Training Conditional (FITC) approximation, which incorporates
training samples that may not be in the original data, known as pseudo data [11]. We introduce M
pseudo inputs X̄ = {x̄m}Mm=1 and the corresponding pseudo outputs ȳ = {ȳm}Mm=1, to every GP in
the cascade. We assume that, conditioning on the pseudo inputs and outputs, every output value yn is
generated from the corresponding input xn by conditioning a multivariate normal on the pseudo data:

P (yn|xn, X̄, ȳ) = N (kTxn
K−1

x̄x̄ȳ, kxn − k
T
xn
K−1

x̄nx̄n
kxn + σ2) (1)

for kxn = k(xn,xn),kxn = [k(xn, x̄1), . . . , k(xn, x̄m)], andKx̄x̄ the kernel matrix evaluated at
our pseudo inputs [11]. The key assumption is that, given the pseudo data, each component of yi is
generated independently. The O(N3) matrix inversion at every GP is now removed, so our overall
complexity becomes O(N2MLH) where M � N . We add a normal prior on the location of the
pseudo outputs: P (ȳ|X̄) = N (0,KX̄X̄), and learn the pseudo parameters at every layer.

As an example, consider a single-dimensional 2-layer deep GP, as in Figure 1. We would like to learn
{(X̄(l)

, ȳ(l))}2l=1, the pseudo data for each layer, along with the kernel parameters for f and g. To
evaluate the log-likelihood at our current parameter estimates, we first sample values from the hidden
layer,H , given our inputs,X . We use the FITC approximation, so

H ∼ N
(
K

XX̄(1)K−1

X̄(1)X̄(1) ȳ
(1), diag

(
KXX −KXX̄(1)K−1

X̄(1)X̄(1)KX̄(1)X

))
.

After obtaining J samples of the hidden layer values, we use each sample H̃
j

to approximate the
marginal log-likelihood (note that this departs from standard applications of the reparameterization
trick, where one sample is often used). After incorporating the priors over the pseudo outputs, we
have:

logP (y|X,Θ) ≈ 1

J

J∑
j=1

logP
(
y|H̃

j
, X̄

(2)
, ȳ(2)

)
+

2∑
l=1

logP
(
ȳ(l)
∣∣X̄(l)

)
. (2)

Finally, we can use automatic differentiation to evaluate gradients. Thus, by maximizing the above
function with respect to Θ, we can learn the model parameters.

The advantages of this algorithm over existing methods to train deep GPs are that it allows for
automatic differentiation, it can extend to arbitrary kernels, and it is comparatively straightforward.
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Figure 2: For a noisy step function with N = 60 data points, we train a 2- and 3-layer deep GP with
1 hidden unit and 10 pseudo parameters for each function, a standard GP for regression, and a 3-layer
BNN with 20 hidden units in each hidden layer and a radial nonlinearity. The red ‘x’s denote the data
points, and the black curves denote 2000 posterior draws for each model, 5 of which are randomly
colored for emphasis.

Damianou and Lawrence [3] also use pseudo parameters at every layer to fit a deep GP, but rather than
learning all the pseudo outputs, they perform inference using approximate variational marginalization
and integrate them out. Subsequent methods implemented to train deep GPs for regression [6, 2, 1]
also use variational approximations. While the variational methods benefit from being able to integrate
out the pseudo outputs, they rely on integral approximations that depend on the particular kernel
being used [6, 1]. Thus, they do not extend easily to arbitrary kernels or to those that are hard to
integrate, such as the Matérn kernel. As a result, our stochastic gradient algorithm has a “black-box”
nature, since it can extend easily to most kernels by using automatic differentiation. This also has
a cost; much can depend on the choice of kernel, which can affect the variance of the gradients.
Additionally, depending on the architecture, optimization can be prone to local optima.

4 Experiments

4.1 Step Function

We illustrate the strengths and limitations of our proposed algorithm by training a deep GP on noisy
step function data. The non-stationarity of a step function implies that a deep GP should perform
better than a standard GP for regression [6]. For a step function with N = 60 data points, we train
2- and 3-layer deep GPs, each with single-dimensional hidden layers, 10 pseudo parameters per
function, and the squared exponential kernel. In addition, we compare models by training a Bayesian
Neural Network (BNN) with black-box stochastic variational inference (BBSVI) [9, 5], with 2 hidden
layers and 20 hidden units in each layer with a radial basis nonlinearity.

Figure 2 illustrates the experimental results. Qualitatively, we observe that the predictive distribution
for the single-layer GP is unable to capture the smoothness at both steps of the function. By
comparison, the predictive draws for the 2- and 3-layer deep GPs are flatter at each step. The deep
GPs are able to capture these fluctuations by composing multiple GPs with varying kernel parameters:
For example, the recovered length-scale parameter for the single-layer GP is l2 = .327, compared to
.539 and .222 for the two functions (in that order) composed for the 2-layer deep GP. Additionally,
compared to the 2-layer deep GP, the 3-layer model has a steeper incline between steps and puts more
weight on the steps outside the input region.

It appears that the posterior draws for a BNN are flatter at the steps than for a deep GP, and the
incline between steps is steeper. However, the draws for the BNN outside of the input range are not
as concentrated at the steps, which does not match our intuition on the uncertainty. Additionally, the
BNN depicted in Figure 2 is a more complex model than the deep GPs we trained, as there are 20
hidden units per layer (as opposed to 1). When we trained a 3-layer BNN with one hidden unit, the
posterior draws provided poorer approximations to the data and displayed little variance. As a result,
in the case of a noisy step function, a deep GP appears to be better suited to capture uncertainty.

To empirically test the success of our models for the noisy step function, we run experiments
comparing prediction quality for 1-, 2-, and 3-layer deep GPs (where each hidden layer has one unit)
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Number of Data Points 1 Layer 2 Layers 3 Layers
50 .44 −.03 1.27
100 .23 .54 −.36
200 −.11 .71 .80

Figure 3: The test log-likelihood per data corresponding to the highest training log-likelihood for
each combination of layers and data points in the step function experiment.
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Figure 4: Predictive draws for toy non-stationary data from a standard GP, a 2-layer deep GP with
one hidden unit, and a 3-layer BNN with 20 hidden units per layer.

with varying sizes of our data set: N = 50, 100, and 200. We train on 80% of the data and test on the
remaining 20%, using 10 pseudo data points for each model. We discovered that deeper models were
prone to poor local optima, so we performed 10 random restarts for each setting, using the model
with the largest training log-likelihood for prediction. Our results are displayed in Figure 3. These
results appear to coincide with the notion that, when successfully trained, deeper models are better
suited to fit the step function.

4.2 Toy Non-Stationary Data

To evaluate a deep GP’s ability to learn non-stationary functions, we create toy non-stationary data
and fit it with various architectures. Specifically, we create data by dividing the input space into three
regions, and sample outputs from a GP using varying hyper-parameters for each region. In Figure 4,
we use a single-layer GP, a 2-layer deep GP with one hidden unit, and a 3-layer BNN with 20 hidden
units per layer to fit the data. The deep GP and BNN yield predictive draws that are highly-varying in
the outside region and flatter in the intermediate region, compared to the single-layer GP which has a
constant curvature. Compared to the deep GP, the BNN appears to fit the data perfectly, although the
uncertainty is more extreme in the transitions between regions and much smaller at the tails.

5 Conclusion

Deep GPs, which combine the deep architecture of BNNs with the probabilistic properties of
standard GPs, are a powerful class of deep Bayesian models. While our proposed algorithm is a
relatively simple inference technique and can extend to arbitrary kernels, it is difficult to optimize, as
optimization over deeper models can result in local minima that do not provide good fits to the data.
When deeper models successfully train, they achieve a higher predictive performance than shallower
models, so it will be beneficial to explore methods that make inference for deep GPs more feasible.
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