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Abstract

In this paper we discuss very preliminary work on how we can reduce the variance
in black box variational inference based on a framework that combines Monte
Carlo with exhaustive search. We also discuss how Monte Carlo and exhaustive
search can be combined to deal with infinite dimensional discrete spaces. Our
method builds upon and extends a recently proposed algorithm that constructs
stochastic gradients using local expectations.

1 Introduction

Many problems in approximate variational inference and reinforcement learning involve the maxi-
mization of an expectation

Eqθ(x)[f(x)], (1)

where qθ(x) is a distribution that depends on parameters θ that we wish to tune. For most interesting
applications in machine learning the optimization of the above cost function is very challenging since
the gradient cannot be computed analytically. To deal with this, several approaches are based on
stochastic optimization where stochastic gradients are used to carry out the optimization.

Specifically, the two most popular approaches are the score function method (Williams, 1992; Glynn,
1990; Paisley et al., 2012; Ranganath et al., 2014; Mnih and Gregor, 2014) and the reparametrization
method (Salimans and Knowles, 2013; Kingma and Welling, 2014; Rezende et al., 2014; Titsias
and Lázaro-Gredilla, 2014). The reparametrization method is suitable for differential functions f(x)
while the score function is completely general and it can be applied to non-smooth functions f(x)
as well. Both these methods are heavily based on sampling from the variational distribution qθ(x).
However, stochastic estimates purely based on Monte Carlo can be inefficient. This is because, while
Monte Carlo has the great advantage that gives unbiased estimates it is computationally very intense
and even in the simplest cases it requires infinite computational time to give exact answers. For
instance, suppose x takes a finite set of K values. While the exact value of the gradient (based on
exhaustive enumeration of all values) can be achieved in O(K) time, Monte Carlo still wastefully
requires infinite computational time to provide the exact gradient.

How can we reduce the computational ineffectiveness of Monte Carlo for (at least) discrete spaces?
Here, we propose to do this by simply moving computational resources from Monte Carlo to
exhaustive enumeration or search so that we construct stochastic estimates by combining Monte
Carlo with exhaustive search. A first instance of such an algorithm has been recently proposed in
(Titsias and Lázaro-Gredilla, 2015) and it is referred to as local expectation gradients or just local
expectations. Here, we extend this approach by proposing i) a new version of the algorithm that can
much more efficiently optimize highly correlated distributions qθ(x) where x is a high dimensional
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discrete vector and ii) by showing how to deal with cases where components of x take infinite values.
In the appendix we also discuss applications to policy gradient optimization in reinforcement learning.

2 A new version of local expectations for correlated distributions

Suppose that the n-dimensional latent vector x = (x1, . . . , xn) in the cost in (1) is such that each
xi takes Mi values. We consider a variational distribution over x that is represented as a directed
graphical model having the following joint density

qθ(x) =

n∏
i=1

qθ(xi|pai), (2)

where qθ(xi|pai) is the conditional factor over xi given the set of the parents denoted by pai and θ is
the set of variational parameters. For simplicity we consider θ to be a global parameter that influences
all factors, but in practice of course each factor could depend only on a subset of dimensions of θ.
Next we will make heavily use of a decomposition of qθ(x) in the form

qθ(x) = qθ(x1:i−1)qθ(xi|pai)qθ(xi+1:n|xi, x1:i−1),
where we intuitively think of qθ(x1:i−1) =

∏i−1
j=1 qθ(xj |paj) as the factor associated with the past,

the single conditional qθ(xi|pai) as the factor representing the present and the remaining term
qθ(xi+1:n|xi, x1:i−1) =

∏n
j=i+1 qθ(xj |paj) as the factor representing the future.

To maximize the cost in (1) we take gradients with respect to θ so that the exact gradient can be
written as

∇θEqθ(x)[f(x)] =
n∑
i=1

∑
x1:i−1

qθ(x1:i−1)

∑
xi

∇θqθ(xi|pai)

 ∑
xi+1:n

qθ(xi+1:n|xi, x1:i−1)f(x)


To get an unbiased stochastic estimate we can firstly observe that the only problematic summation
that is not already an expectation is the summation over xi. Therefore, our idea is to deal with the
problematic summation over xi by performing exhaustive search, while for the remaining variables
we can use Monte Carlo. We need two Monte Carlo operations that require sampling from the
past factor qθ(x1:i−1) and sampling also from the future factor qθ(xi+1:n|xi, x1:i−1). These two
operations need to be treated slightly differently since the past factor is independent from xi, while
the future factor does depend on xi. We can approximate the expectation under the past by drawing a
sample x(s)1:i−1 from qθ(x1:i−1) yielding

∇θEqθ(x)[f(x)] ≈
n∑
i=1

Mi∑
m=1

∇θqθ(xi = m|pa(s)i )

 ∑
xi+1:n

qθ(xi+1:n|xi = m,x
(s)
1:i−1)f(x

(s)
1:i−1, xi:n)


where we have explicitly written the sum over all possible values of xi. To get now an unbiased
estimate of this we will need to draw Mi samples from all possible future factors qθ(xi+1:n|xi =
m,x

(s)
1:i−1),m = 1, . . . ,Mi which gives

∇θEqθ(x)[f(x)] ≈
n∑
i=1

Mi∑
m=1

∇θqθ(xi = m|pa(s)i )f(x
(s)
1:i−1, xi = m,x

(s,m)
i+1:n), (3)

where x(s,m)
i+1:n ∼ qθ(xi+1:n|xi = m,x

(s)
1:i−1). All these samples can be intuitively thought of as

several possible imaginations of the future produced by exhaustively enumerating all values of xi at
present time. Also the computations inside the sum

∑n
i=1 can be done in parallel. This is because

we can a draw single sample x(s) from qθ(x) beforehand and then move along the path x(s) and
compute all n terms involving the sums

∑Mi

m=1 in parallel.

The above algorithm is simpler and much more effective than the initial algorithm in (Titsias and
Lázaro-Gredilla, 2015) which is based on the Markov blanket around xi, and it operates similarly
to Gibbs sampling where a single future sample is used. Notice, however, that for fully factorised
distributions where the past, present and future are independent the above procedure essentially
becomes equivalent to local expectations in (Titsias and Lázaro-Gredilla, 2015). So it is only for the
correlated distributions that the above stochastic gradients differ than the one proposed in (Titsias
and Lázaro-Gredilla, 2015). In appendix we describe how the above algorithm can be used in
reinforcement learning.
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3 Dealing with infinite dimensional spaces

For several applications, as those involving Bayesian non-parametric models or Poisson latent variable
models, some random variables xi can take countably infinite values. How can we extend the previous
algorithm and the algorithms proposed in (Titsias and Lázaro-Gredilla, 2015) to deal with that? The
solution is rather simple: we need to transfer computations from exhaustive search back to Monte
Carlo.

Suppose that some random variable xi takes infinite values so in order to evaluate the stochastic gradi-
ent in (3) we need to perform the following infinite sum

∑∞
m=1∇θqθ(xi = m|pa(s)i )f(x

(s)
1:i−1, xi =

m,x
(s,m)
i+1:n), which next in order to simplify notation we shall write as

∞∑
xi=1

∇θqθ(xi)f(xi).

We introduce a possibly adaptive integer T ≥ 1 and write the above as
T∑

xi=1

∇qθ(xi)f(xi) +
∞∑

xi=T+1

∇qθ(xi)f(xi).

The first finite sum can be computed exactly through exhaustive enumeration. Thus, to get an overall
unbiased estimate we need to get an unbiased estimate for the second term. For that we will use
Monte Carlo. More precisely, to use Monte Carlo we need to apply the score function method so that
the second term is written as

∞∑
xi=T+1

∇qθ(xi)f(xi) =
∞∑

xi=T+1

qθ(xi)∇ log qθ(xi)f(xi)

= (1−Q(T ))

∞∑
xi=T+1

qθ(xi)

1−Q(T )
∇ log qθ(xi)f(xi)

= (1−Q(T ))

∞∑
xi=T+1

qvi(xi|xi > T )∇ log qθ(xi)f(xi)

where Q(T ) =
∑T
xi=1 qθ(xi) is the cumulative distribution function and qθ(xi|xi > T ) is the

truncated variational distribution over the space xi > T . To get now an unbiased estimate we simply
need to draw independent samples from qθ(xi|xi > T ). So overall the stochastic gradient is

T∑
xi=1

∇qθ(xi)f(xi) +
1−Q(T )

S

S∑
s=1

∇ log qθ(x
(s)
i )f(x

(s)
i ). (4)

This gradient is unbiased for any value of T . However, in practice to efficiently reduce variance we
will need to choose/adapt T so that the probability Q(T ) becomes large and the contribution of the
second term is small. In practice, to implement this in a black box manner we can adaptively choose
T so that at each optimization iteration Q(T ) is above a certain threshold such as 0.95.

4 Discussion

We have presented methods to combine Monte Carlo and exhaustive search in order to reduce variance
in stochastic optimization of variational objectives and also to deal with infinite dimensional discrete
spaces. The appendix describes a related algorithm for policy gradient reinforcement learning.
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A Combine Monte Carlo and exhaustive search for policy optimization

Consider a finite horizon Markov decision process (MDP) with joint density

p(α0:h−1, s1:h|s0) =
h−1∏
t=0

πθ(αt|st)p(st+1|st, αt). (5)

Let Rt+1 = R(st, αt, st+1) denote the reward that the agent receives when starting at state st, performing
action αt and ending up at state st+1. The agent wishes to tune the policy parameters θ so that to maximize the
expected total reward

vθ(s0) = E

[
h−1∑
t=0

Rt+1

]
where the expectation is taken under the distribution p(α0:h−1, s1:h|s0) given by eq. (5). The gradient is
explicitly written as

∇θvθ(s0) =

h−1∑
k=0

∑
α0:h−1,s1:h

p(s1:k, α0:k−1|s0)∇θπθ(αk|sk)p(sk+1:h, αk+1:h−1|sk, αk)

[
h−1∑
t=0

Rt+1

]

=

h−1∑
k=0

fkθ (s0) (6)

where

p(s1:k, α0:k−1|s0) =
k−1∏
t=0

πθ(αt|st)p(st+1|st, αt)

p(sk+1:h, αk+1:h−1|sk, αk) = p(sk+1|sk, αk)
h−1∏
t=k+1

πθ(αt|st)p(st+1|st, αt).

The function fkθ (s0) can be thought as the gradient information collected by the agent at time k, i.e. when
the agent takes action αk. The probability distribution p(s1:k, α0:k−1|s0) describes the sequence of states and
actions that precede action αk, while p(sk+1:h, αk+1:h−1|sk, αk) describes those generated after αk is taken.
Observe that while p(s1:k, α0:k−1|s0) is independent from the current action αk, p(sk+1:h, αk+1:h−1|sk, αk)
depends on it since clearly the future states and actions are influenced by the current action.

The exact value of fkθ (s0) is computationally intractable and we are interested in expressing low variance
unbiased estimates that can be realistically acquired through actual experience. The key idea of our approach is
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to explore all possible actions at time k, and then combine this with Monte Carlo sampling. By taking advantage
of the Markov structure of fkθ (s0) we re-arrange the summations as

fkθ (s0) =
∑
s1:k

α0:k−1

p(s1:k, α0:k−1|s0)
∑
αk

∇θπθ(αk|sk)
∑
sk+1:h

αk+1:h−1

p(sk+1:h, αk+1:h−1|sk, αk)

[
h−1∑
t=0

Rt+1

]

=
∑
s1:k

α0:k−1

p(s1:k, α0:k−1|s0)
A(sk)∑
m=1

∇θπθ(αk = m|sk)
∑
sk+1:h

αk+1:h−1

p(sk+1:h, αk+1:h−1|sk, αk = m)

[
h−1∑
t=0

Rt+1

]

where A(s
(i)
k ) denotes the number of possible actions when we are at state s(i)k . To get now an unbiased estimate

we can sample from p(s1:k, α0:k−1|s0) and from each conditional p(sk+1:h, αk+1:h−1|sk, αk = m). More
precisely, by generating a single path (s

(i)
1:k, α

(i)
0:k−1) from the past factor p(s1:k, α0:k−1|s0) we obtain

A(s
(i)
k

)∑
m=1

∇θπθ(αk = m|s(i)k )
∑
sk+1:h

αk+1:h−1

p(sk+1:h, αk+1:h−1|s(i)k , αk = m)

[
h−1∑
t=0

R
(i)
t+1

]

Notice that the reward values R(i)
t+1 are now indexed by i to emphasize their dependence on the drawn trajectory.

However, the above quantity still remains intractable as the summation over all future trajectories, i.e. over the
set (sk+1:h, αk+1:h−1), is not feasible. To deal with that we can use again Monte Carlo by sampling from each
conditional MDP with distribution p(sk+1:h, αk+1:h−1|s(i)k , αk = m) so that we start at state s(i)k , we take
action αk = m and subsequently we follow the current policy. Thus, overall we generate A(s

(i)
k ) total future

trajectories, denoted by (s
(i,m)
k+1:h, α

(i,m)
k+1:h−1)

A(s
(i)
k

)

m=1 , and obtain the estimate

A(s
(i)
k

)∑
m=1

∇θπθ(αk = m|s(i)k )

[
k−1∑
t=0

R
(i)
t+1 +

h−1∑
t=k

R
(i,m)
t+1

]

Here, is rather crucial to see that the sum of rewards is split into two different terms:
∑k−1
t=0 R

(i)
t+1 which is the

sum of rewards obtained before the action αk is taken, and
∑h−1
t=k R

(i,m)
t+1 which is the sum of rewards obtained

by performing action αk = m and then following the policy. Unlike the rewards in second term that depend on
the current action (and therefore are indexed by both i and m), the first term is just a constant with respect to the
action αk. By taking advantage of that, the above unbiased estimate simplifies to

A(s
(i)
k

)∑
m=1

∇θπθ(αk = m|s(i)k )

[
h−1∑
t=k

R
(i,m)
t+1

]
(7)

where we used that
∑A(s

(i)
k

)

m=1 ∇θπθ(αk = m|s(i)k )
[∑k−1

t=0 R
(i)
t+1

]
=

∑k−1
t=0 R

(i)
t+1

∑A(s
(i)
k

)

m=1 ∇θπθ(αk =

m|s(i)k ) = 0.
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