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Abstract

We formulate the problem of influencing the growth of a network as a stochastic
optimal control problem in which a structural cost function penalizes undesired
topologies. We approximate this control problem with a restricted class of control
problems that can be solved using probabilistic inference methods. To deal with the
increasing problem dimensionality, we introduce an adaptive importance sampling
method for approximating the optimal control. We illustrate this methodology in the
context of formation of information cascades, considering the task of influencing
the structure of a growing conversation thread, as in Internet forums. Using a
realistic model of growing trees, we show that our approach can yield conversation
threads with better structural properties than the ones observed without control.

1 Introduction

Many complex systems can be characterized by the topology of an underlying network. Examples of
such systems are human interaction networks, where the links may represent transmitting opinions [2],
habits [5], finances [1] or viruses [15]. Being able to control, or just influence in some way, the
dynamics of such complex networks may lead to important progress, for example, avoiding financial
crises, preventing epidemic outbreaks or maximizing information spread in marketing campaigns.
The control of the dynamics on networks is a very challenging problem that has attracted significant
interest recently [14, 3, 6]. Existing approaches typically consider network controllability as the
controllability of the dynamical system induced by the underlying network structure. While it is
agreed that network controllability critically depends on the network structure, the problem of how to
control the network structure itself while it is evolving remains open.

The network structure is determined by the dynamics of addition/deletion of nodes/links over time.
Here we address the problem of influencing this dynamics in the framework of stochastic optimal
control. We propose an approximation based on a special class of stochastic optimal control prob-
lems, known as Kullback-Leibler (KL) control or Linearly-Solvable Markov Decision Problems
(LMDPs) [10, 20]. For such problems, one can use adaptive importance sampling methods that scale
well in when the state space increases, as in our case, and the standard approach through dynamic
programming is no longer feasible. The optimal solution for the KL-control problem tends to be
sparse, so that only a few next states become relevant, effectively reducing the branching factor of the
original problem. We use the obtained solution of the KL-control problem to compute an action in
the original problem that does not necessarily belong to the KL-control class.

2 Optimal Network Growth as a Kullback-Leibler Control Problem

Let xt ∈ X denote the growing structure of the network at time-step t, with X the set of all possible
network structures. We define the natural (uncontrolled) growth process of the network as a Markov
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chain with transition probabilities p(x′|x). Our controls directly specify the transition probabilities
between two subsequent network structures, e.g. u(x′|x, t). At each time-step t, we incur an arbitrary
application-dependent cost r(x, t), which is assigned when the state is reached. For example, if one
wants to favour networks with large average clustering coefficient C(x), then r(x, t) = −C(x).

Let the probability of an uncontrolled network trajectory (path) xt+1:T be p̄ = p (xt+1:T|x, t) =∏T−1
t=1 p(xt+1|xt) and, similarly, denote the probability of a controlled path as ū. Define the total

expected cost of a controlled path as

CλKL (x, t, u(·)) =r (x, t) +

〈
T∑

t′=t+1

r (xt′ , t′)

〉
ū

+ λDKL (ū ‖ p̄) (1)

with the KL-divergence DKL (ū ‖ p̄) =
〈

log ū
p̄

〉
ū
, which measures the closeness between path

distributions. Parameter λ thus regulates the influence of the control on the natural network dynamics.

The control problem consisting in minimizing CλKL w.r.t. the control u(x′|x, t) belongs to the KL-
control class and has a closed form solution [20, 10]. The probability distribution of an optimal path
u∗KL (xt+1:T|x, t) that minimizes Eq. (1) is

u∗KL (xt+1:T|x, t) =
p (xt+1:T|x, t)φ(xt+1:T)

〈φ(xt+1:T)〉p(xt+1:T|x,t)
, φ(xt+1:T) := exp

(
− 1

λ

T∑
t′=t+1

r(xt′ , t′)

)
. (2)

Plugging this into Eq. (1) and minimizing gives the optimal cost-to-go for state x and time t

JλKL(x, t) = r(x, t)− λ log 〈φ(xt+1:T)〉p(xt+1:T|x,t) , (3)

which can be numerically approximated using paths sampled from the natural network growth
dynamics p(xt+1:T|x, t). The optimal control at time t is the marginal state-transition distribution

u∗KL(x′|x, t) ∝
∑

xt+2:T

u∗KL (xt+1 = x′, xt+2:T|x, t) = p(x′|x) exp

(
−J

λ
KL(x′, t + 1)

λ

)
. (4)

This resembles a Boltzmann distribution with temperature λ where the optimal cost-to-go takes the
role of an energy. For high values of λ, u∗KL(x′|x, t) deviates only a little from the natural network
growth, thus the optimal control has a weak influence on the system. In contrast, for low values of λ,
the exponential in Eq. (4) becomes very pronounced for the state(s) x′ with the smallest cost-to-go,
suppressing the transition probabilities to suboptimal states x′. Thus the control has a very strong
effect on the process. In the limit of λ going to zero, the controlled process becomes deterministic.

In real applications, our control signal may be constrained in different ways and it may not be possible
to directly control the transition dynamics between two network structures. Nevertheless, we can use
the optimal cost-to-go JλKL(x′, t + 1) of Eq. (3) as a proxy of the real optimal cost-to-go and select an
action greedily according to an estimate of JλKL(x′, t + 1). This is the approach taken in this work.

2.1 Adaptive Importance Sampling in Growing Networks

A naive way to sample from the optimal growth process consists in sampling paths from the uncon-
trolled growth process of the network p(x′|x) and weight them by their corresponding exponentiated
state costs. This method is inefficient, specially for low temperatures, when only a few samples
with very large weights contribute to the approximation, resulting in very poor estimates. This is a
standard problem in Monte Carlo sampling. The Cross-Entropy (CE) method [4, 11] is an adaptive
importance sampling algorithm that incrementally updates a baseline sampling policy, which is more
sample efficient than the naive sampling method.

We use the CE in the discrete formulation. Our proposal distribution uω(x′|x, t), with parameters ω,
takes the same Markov process form as the optimal control u∗KL, Eq. (4). We approximate the cost-to-
go by a linear sum of time-dependent feature vectors ψk(x, t) that encode the network structure

uω(x′|x, t) ∝ p(x′|x) exp

(
− J̃KL(x′, ω(t))

λ

)
, J̃KL(x, ω(t)) =

∑
k

ωk(t)ψk(x, t). (5)
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The CE method alternates the following steps until convergence:

Step 1: The optimal control ū∗KL = u∗KL (xt+1:T|x, t) is estimated using sample paths drawn from the
parametrized proposal distribution uω(x′|x, t). We generate M sample paths x(i)

t+1:T, i = 1, . . . ,M
from uω(x′|x, t) and reweight them with the corresponding importance sampling weights

u∗KL

(
x(i)

t+1:T|x, t
)
∝ uω(x(i)

t+1:T|x, t)
p
(

x(i)
t+1:T|x, t

)
uω(x(i)

t+1:T|x, t)
exp

(
− 1

λ

T∑
t′=t+1

r(x(i)
t′ , t

′)

)
. (6)

Step 2: The time-dependent weights ωk(t) of the importance sampler are updated such that uω(x′|x, t)
becomes closer to the optimal sampling distribution. This update involves again a KL-minimization,
but with respect to the importance sampling distribution ūω

argminωDKL (ū∗KL ‖ ūω) = argminω

〈
log

ū∗KL

ūω

〉
ū∗KL

= argminω − 〈log ūω〉ū∗KL
=: −D(ω), (7)

where we dropped the term 〈log ū∗KL〉ū∗KL
, since ω does not depend on it. We minimize Eq. (7) by

gradient descent. The parameters ωk(t) are initialized with zeros, which makes the initial proposal
distribution equivalent to the uncontrolled dynamics.

3 Application: Growing Cascades Algorithm 1 Cross-Entropy method for KL-
control of network growth
Require: importance sampler uω ,

state x, feature space ψ(·),
number of samples M, learning rate η

l← 0
ω

(l)
k (t)← 0, Initialize weights for all k, t, l

x(i)
t+1:T ← draw M paths ∼ uω(l) ,i = 1, . . . ,M

repeat
compute gradients ∂D(ω(l))

∂ωk(t)

ω
(l+1)
k (t)← ω

(l)
k (t) + η ∂D(ω(l))

∂ωk(t) for all k, t, l

x(i)
t+1:T ← draw M samples ∼ ũω(l+1)

l← l + 1
until convergence
return estimate u∗KL(x′|x, t)

We now illustrate the presented framework in
the context of growing information cascades.
In particular, we focus on the task of influenc-
ing the growth of online conversations, that oc-
cur, for example, in online forums such as we-
blogs [12] or news aggregators [7]. Conversa-
tion threads start with an initial post and are
followed by a cascade of reactions from differ-
ent users that comment either to the original post
or to comments from other users.

We assume an underlying (not observed) com-
munity of users and focus on the discussion
thread as a growing tree. In this application,
we ignore the content of the messages. Since
we can not control directly what is the node that
will receive the next comment, we propose to
use the user interface as a control mechanism to influence indirectly the thread formation process.
In our case, the control signal is a recommended comment to which the next user can reply. Our
goal is thus to modify the structure of a tree (the conversation) in a certain way while it evolves, by
influencing its growth indirectly.

In this application, we are interested in trees with large Hirsch indices (h-index). A tree with h-index h
has h comments each of which have received at least h replies, thus measures how distributed the
comments of users on previous comments are. We model the problem as a finite horizon task with
end-cost only, defined as r(x, t) = −δt,T · h(x), where h(x) is the h-index of the tree x. Since the
h-index is a function of the degree sequence of all the nodes in the tree, we use the degree histogram
as features ψk(x, t) for the parametrized form of the optimal cost-to-go, Eq. (5). That is, feature
ψk(x, t) is the number of nodes with degree k in the tree x at time-step t.

We learn the uncontrolled process p(x′|x) from a dataset of online discussions from Slashdot 1. We
use a generative model of cascades introduced in [8]. This model determines the probability of a
comment to attract a reply by means of an interplay between the popularity of a comment (number of
replies that a comment has already received), its novelty (elapsed time since the comment appeared
in the thread) and a root bias (certain trendiness of the main post). Such a model has proven to be
successful in capturing the structural properties and the temporal evolution of discussion threads
present in very diverse platforms [8].

1www.slashdot.org
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Figure 1: h-index of a growing cascade: (blue)
the uncontrolled dynamics according to the learned
model, (green) the KL-optimally controlled ap-
proximation and our action selection based control
for α = 0.5 (black) and α = 1 (red). In all cases,
λ = 0.2 and M= 103 paths.

To evaluate the proposed framework we use a
simulated environment, without real users. We
set the horizon time T = 50 and start from a
thread with a single node. The state-space con-
sists therefore of 50! ≈ 364 states. At each
time-step, a new node is added to the thread
by a (simulated) user. For that, we first choose
which node to highlight (optimal action) using
Algorithm 1. We then simulate the user, who
either selects the highlighted node with some
probability p′ = α/(1−α) or chooses to ignore
it with probability 1−p′. In that case, the parent
node is chosen according to the natural growth
process p(x′|x) learned from Slashdot data. This
process is repeated until the end time T.

Figure 1 shows the evolution of the h-index us-
ing different control mechanisms derived from
our proposed framework. To our knowledge,
there are no current alternative methods to
compare with in this complex task. The blue
curve corresponds to the uncontrolled dynamics
p(x′|x). In green, we show the evolution of the
h-index using our estimate of u∗KL , for temper-

ature λ = 0.2. As expected, we observe a faster increase, on average, than using the uncontrolled
dynamics. The red and black curves show the evolution of the h-index using our proposed highlighting
mechanism, with the expected cost-to-go JλKL of the KL-optimal control with λ = 0.2, for α = 1 and
α = 0.5, respectively. In both cases the obtained h-index is even higher than the one obtained with
the KL-control approximation. Therefore, the objective for this task, to increase the h-index, can be
achieved through our action selection strategy. As expected, a higher value of α = 1 leads to higher
h-indices than a lower one α = 0.5.

Figure 2 shows examples of discussion threads. The one resulting from applying our action selection
strategy has h-index 6 while the data and model have both h-index 4.

Slashdot thread Uncontrolled thread
Controlled thread

Figure 2: (left) A thread from the data (Slashdot), (middle) an uncontrolled thread generated from
the model and (right) a controlled thread. In yellow, the nodes that contribute to the h-index.

4 Conclusions

We have presented a method for controlling the structure of a growing network using stochastic
optimal control. Our approach is inspired in recent developments on optimal control with information-
processing constraints [19, 18, 16, 13, 9]. The KL-control formulation effectively introduces a
regularizer which penalizes deviations from the natural network growth process. One advantage of
this approach is that the optimal control can be solved by adaptive importance sampling.

We have illustrated the effectiveness of our method on the task of influencing the growth of conversa-
tion cascades. This is a non-trivial task characterized by a sparse, delayed reward, since the h-index
remains constant during most of the time, and therefore a greedy strategy is not possible.
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