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Abstract

We introduce the theory of parametric inversion, which generalizes function inver-
sion to non-invertible functions. We define parametric inverses for several common
functions, and present an algorithm to symbolically transform a composition of
functions (i.e., a program) into a corresponding parametric inverse. We then outline
a variational approach to sampling from a conditional distribution as a form of
constrained parametric inversion.

Recent advances in probabilistic programming [6, 5] and deep-generative modeling [4, 7], have
dramatically expanded the kinds of probabilistic models we can express and learn. Unfortunately,
Bayesian inference procedures have not kept pace; there is a growing chasm between our ability to
simulate complex probability distribution, and invert them for probabilistic inference.

In such complex probabilistic models it is often difficult to infer latent variables that are consistent
with the observed values, let alone drawn from the correct posterior distribution. For example, we
can view vision as inference of probable scenes (geometry, lighting, material, etc) that render to an
observed image, but forward simulation of a prior distribution will in practice generate scenes which
are simply inconsistent with our observations.

We propose an alternative approach: to simulate a random variable in reverse, starting with the
observations. Inferred latent values are then consistent by construction. To define inverse simulation
when a random variable is not invertible, we present parametric inversion, which generalizes function
inversion to non-injective functions. A non-injective function f : X → Y is not invertible because it
lacks a unique right inverse, a function f−1 : Y → X which for all y satisfies:

f(f−1(y)) = y (1)
To generalize inversion, a parametric inverse represents a set of right-inverses parametrically, as a
mapping from a parameter space to a function in a set.

Parametric inversion of random variables leads to a novel formulation of Bayesian inference by
inverse simulation. In this abstract, we: (i) introduce the concept of parametric inversion, (ii) present
an algorithm to construct a parametric inverse from a composition of these primitives, and (iii) outline
its extension to random variables for conditional sampling.

1 Example: Bayesian Inference as Constrained Inversion

To demonstrate how Bayesian inference requires function inversion, consider the following model:
x ∼ exponential(λ = 1) y ∼ logistic(µ = x, s = 1)

We can express this model as a pair of random variables (figure 1), i.e., transformations of ω ∈ [0, 1]:
exponential(ω;λ) = − ln(1− ω)/λ x(ω1) = exponential(ω1, 1)

logistic(ω;µ, s) = µ+ s ln(ω/(1− ω)) y(ω1, ω2) = logistic(ω2, x(ω1), 1)

To conditionally sample a value of x which is consistent with observation y = c, let (ω∗1 , ω
∗
2) =

y−1(c), then evaluate x(ω∗1). Hence, conditioning requires inverting y, but what if y is not invertible?
How can we draw samples from x that are not only consistent, but from the posterior P (x | y = c)?
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2 Parametric Inversion

Parametric inversion generalizes function inversion to non-invertible functions. A parametric inverse
of a function f : X → Y is a parameterized function f−1 : Y ×Θ→ X which maps an element y
to a single element of its preimage: f(y; θ) ∈ {x | f(x) = y}. The parameter θ determines which
element of the preimage is returned.

In contrast to a conventional inverse, a parametric inverse always exists. For example, while
f(x) = |x| is not invertible, we can define a parameter space θ ∈ {−1, 1} and parametric inverse
f−1(y; θ) = θ · y, where θ determines whether the positive or negative inverse element is returned.

If a function takes multiple inputs, its parametric will return a tuple. For example, inverse multiplica-
tion (we denote ×−1) maps a value z to two values whose product is z: ×−1(z; θ) = (θ, z/θ), where
θ ∈ R \ 0. Parametric inverses are not unique; it is equally valid to define ×−1(z; θ) = (z/θ, θ).

Many functions map between a value and its preimage; we reserve the term parametric inverse for
those which are sound and complete in this task.

Definition 1. f−1 : Y ×Θ→ X is a sound and complete parametric inverse of f : X → Y if ∀y:

{f−1(y; θ) | θ ∈ Θ} = {x | f(x) = y} (2)

Condition 2 asserts that parametric inverses are (i) sound: for any θ, f−1(y; θ) is an element of the
preimage of y, and (ii) complete: there exists θ corresponding to every element of the preimage.
Inverse addition as +−1(z; θ1, θ2) = (θ1, θ2) is complete but not sound; for any z, there exists a θ1

and θ2 which sum to z, but there are many more pairs which do not. +−1(z; θ) = (0, z) is sound
but not complete; there exists no θ such that for instance +−1(0; θ) = (−2, 2), despite the fact that
−2 + 2 = 0. Hence, neither of these are valid parametric inverses of addition.

A parametric inverse has a dual interpretation. If y is fixed, varying the parameter θ varies which
element of the preimage of y is returned. If θ is fixed, f−1 is a function of only y and a right-inverse
which satisfies equation 1. These two alternatives are useful for different applications.

Figure 1: Bayesian parameter estimation. Ran-
dom variable y is a function of sample space.
Intersection of y with plane is subset of Ω1×Ω2

which is consistent with y = 0.2. Varying θ in
parametric inverse y−1(0.2; θ) covers this set

f Θ f−1

x+ y R (θ, z − θ)
x− y R (z + θ, θ)
x · y R \ 0 (z/θ, θ)
x/y R (z · θ, θ)
xy R (θ, logθ(z))
logx(y) R \ 0 (θ, θz)
min(x, y) R+ (z, z + θ)
max(x, y) R+ (z, z − θ)
sin(x) Z asin(x) + 2πθ
cos(x) Z acos(x) + 2πθ

Figure 2: Primitive parametric inverses. Column
f contains forward non-injective functions. Θ is
the parameter space used for parametric inverses
shown in column f−1.

3 Parametric Inversion of Composite Functions

Arbitrarily complex functions can be found by composing functions from a small set of primitive
functions. Given functions f2 : X → Y , f1 : Y → Z, and composition f = f1 ◦ f2, to construct a
parametric inverse f−1 : Z ×Θ→ X we substitute f1 and f2 with their corresponding parametric
inverses f−1

1 and f−1
2 , and reverse the order of composition:

f−1(z; θ1, θ2) = f−1
2 (f−1

1 (z, θ1), θ2) (3)
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For illustration, let f = sin ◦ cos, then f−1(z) = sin−1(cos−1(z; θ1), θ2) with parameter space
Θ = Θ1 ×Θ2. In an extension of notation, we overload the composition operator ◦ to denote this
inverse composition of parametric inverses as cos−1 ◦ sin−1.

By construction f−1 will be a parametric inverse of f on some subset of Θ1 ×Θ2. Continuing our
example, for most θ, sin−1(y; θ) will return a value not within [−1, 1], the domain of cos−1. f−1 is
undefined for these parameter values, and hence a partial, not total parametric inverse.
Definition 2. If a function f−1 : Y × Φ→ X does not satisfy condition 2, it is a partial parametric
inverse if there exists a Θ ⊂ Φ such that f−1 : Y ×Θ→ Y satisfies condition 2.

Figure 3: The forward function (left) is a total function. Its parametric inverse (center) is partial,
because there exists parameter values which generate values (in red) on which f−1

2 is undefined. The
solution used in approximate parametric inverses is to insert a restriction c between the two.

Parametric inversion extends to longer chains of composed functions. For convenience, if f−1 =
f−1

2 ◦ f−1
1 , then f−1 is defined as in equation 3,

Algorithm 1. Given f = f1 ◦ f2 · · · ◦ fn, substitute fi with f−1
n−i to construct f−1 = f−1

n ◦ f−1
n−1 ◦

· · · ◦ f−1
1 , where f−1

i is a parametric inverse of fi. f−1 is a partial parametric inverse of f with a
parameter space Θ = Θ1 ×Θ2 × · · · ×Θn, where Θi is the parameter space of primitive f−1

i .

4 Approximate Parametric Inversion

If the undefined subset of the parameteric space is large or complex, as typically is the case, a
parametric inverse will be useless in practice. We present approximations which force a parametric
inverse to be total, but may be unsound.

Definition 3. An approximate parametric inverse is a function f̃−1 : Y × Θ → X × R+, which
returns an approximate inverse element x̃ ∈ X and a non-negative error term e ∈ R+. f̃−1 is an
approximate parametric inverse of f : X → Y if e = 0 implies x̃ ∈ {x | f(x) = y}.

To transform a partial parametric inverse into an approximate we must make it: (1) well defined on
all of its parameter space, and (ii) output an error term of 0 when unsound.

To solve the first problem we insert a function c12 between each pair of primitives f−1
i−1 (see figure

3) and f−1
i , which takes any value in the domain of f−1

i and restricts it to the domain of f−1
i−1. For

example, cos−1 ◦ sin−1 becomes cos−1 ◦clip−1,1 ◦ sin−1, where the clipa,b returns its input clamped
to the closest point in the interval [a, b], and the distance between its input and output as an error
term:

clipa,b(x) = (b, x− b) if x ≥ b | (a, a− x) if x ≤ a | (x, 0) otherwise
The error term of the composition is then simply the sum of the error terms of its elements.

4.0.1 Approximate Composition Chain

Algorithm 2 extends this procedure to a chain of composed functions. We first define f̃−1
1 ◦ f̃−1

2 :

Let (x̃1, e1) = f̃−1
1 (y; θ1) and (x̃2, e2) = f̃−1

2 (x̃1; e1), then f̃−1 = f̃−1
1 ◦ f̃−1

2 is defined as:

f̃−1(y; θ1, θ2) = (x̃2, e1 + e2) (4)

Algorithm 2. Given a partial parametric inverse f−1 = f−1
n ◦ f−1

n−1 ◦ · · · ◦ f
−1
1 , substitute f−1

i with
ci,j ◦ f−1

i to construct f̃−1 = f−1
n ◦ cn−1

n ◦ f−1
n−1 ◦ · · · ◦ f

−1
2 ◦ c12 ◦ f−1

1 . f̃−1 is an approximate
parametric inverse of f , where cii−1 restricts values in the codomain of f−1

i to the domain of f−1
i−1.

Often the model we wish to invert is not expressible in the form fi ◦ fi+1 ◦ · · · ◦ fn. However, the
basic approach of algorithm 1 and 2 - to substitute each primitive operation with its parametric inverse
and reverse the direction of information flow - extends to richer classes of computation.
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5 Variational Inversion of Random Variables

We propose to extend parametric inversion to conditionally sample from a random variable. A
random variable is a function X : Ω → T where Ω is sample space equipped with a measure
P : P(Ω) → [0, 1]. To sample from X conditioned on observation X = c means to (i) construct
a predicate Y : Ω → {0, 1} where Y (ω) := X(ω) = c, (ii) sample ω ∈ A with probability
P(ω)/P(A), where A = {ω | ω ∈ Ω, Y (ω) = 1} is the conditioning event, and (iii) compute X(ω).

Step (ii) implicitly involves the inversion of Y ; we can use algorithm 1 to explicitly transform
Y : Ω→ {0, 1} into a parametric inverse Y −1 : {0, 1} ×Θ→ Ω. To simplify notation we ignore
scenarios where our condition does not hold and denote Y −1

1 (θ) = Y −1(1; θ). Then for any θ ∈ Θ,
X(Y −1

1 (θ)) is a value which is consistent with Y but may well not be sampled from the correct
distribution P (X|Y ). To sample correctly we must impose a distribution on Θ.

The simplest case arises when P is a uniform measure - P(ω) = 1/ |Ω|; our goal is then to sample
ω ∈ A uniformly. Y −1

1 partitions Θ into cells, each of which is a preimage of an element of A.
Since P is uniform, Y −1

1 is measure-preserving if each cell has equal measure. In this case, sampling
uniformly from Θ induces uniform samples over A. If however Y −1

1 is not measure preserving, the
cells will differ in measure, and uniform sampling over Θ will produce biased samples in A.
Example 1. Let Ω = {1, 2, 3}, Y (ω) = X(ω) < 3. Then A = {1, 2}. Let Θ = {1, 2, 3, 4}, and
Y −1

1 (θ) = 1 if θ ≤ 2 else 2. Then, sample θ with probability 0.25. Alternatively, if Y −1
1 (θ) =

1 if θ ≤ 3 else 2, then sample θ as 4 probability 0.5 and 1, 2, 3 each with probability 0.5/3

Generative Variational Family

To counteract bias when Y −1
1 is non-measure-preserving, we posit a second sample space Φ equipped

with a uniform measure PΦ, and a parameterized random variable Z : Φ×W → Θ. These induce a
variational family [2] Q : Φ×W → Ω, where Q(φ;w) = Y −1

1 (Z(φ;w)).

Let [θ] = {θ′ | Q(θ′;w) = Q(θ;w)} denote the equivalence class of θ′. Then ω = Q(φ;w) - where
φ ∼ PΦ - will be uniformly distributed if:

PΦ([φ]) = 1/ |A| (5)
This condition is intractable to compute for most interesting models. Instead, we explore variational
objective functionals over Q whose optima coincide with satisfying 5

Uniformity Maximization

Since we expect samples in A to be uniform, we propose to use measures of uniformity on samples
in A generated by Q as its variational objective. Let A∗ be a multiset {ω | ω = Q(φ;w), φ ∈ Φ},
and D(A∗) denote a measure of uniformity. A∗ is uniformly distributed if the number of duplicate
instances of each element is constant. Q is measure-preserving if and only if A∗ is uniformly
distributed. If A∗ is uniformly distributed when its D is minimal, then Q is measure preserving when
the A∗ it generates has minimal D.

Many uniformity measures have been proposed [8, 3, 1], With an uniformity measure which satisfies
the above conditions, the general approach for inverse simulation is as follows:
Algorithm 3. Given condition Y : Ω → {0, 1}, construct (i) an approximate parametric inverse
Ỹ −1, (ii) an auxiliary sample space Φ, (iii) a parameterized random variable (e.g., neural network) Z,
and (iv) a variational family Q̂ : Φ ×W → Ω, where Q̃(φ;w) = Ỹ −1

1 (Z(φ;w)). Take n samples
φi ∼ PΦ, and compute (ω̃i, ei) = Q̃(φi;w). Find w such that

arg min
w

D((ω̃i, ..., ω̃n) +
∑
i

ei (6)

Minimizing terms e and D(ω̃) optimize for correctness in inversion and distribution respectively.

6 Discussion

We presented a framework for parametric inversion of non-injective functions, and outlined a varia-
tional approach to conditional sampling.
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