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Abstract

Adapting statistical learning models online with large scale streaming data is a
challenging problem. Bayesian non-parametric mixture models provide flexibility
in model selection, however, their widespread use is limited by the computational
overhead of existing sampling-based and variational techniques for inference.
This paper analyses the online inference problem in Bayesian non-parametric mix-
ture models under small variance asymptotics for large scale applications. Direct
application of small variance asymptotic limit with isotropic Gaussians does not
encode important coordination patterns/variance in the data. We apply the limit
to discard only the redundant dimensions in a non-parametric manner and project
the new datapoint in a latent subspace by online inference in a Dirichlet process
mixture of probabilistic principal component analyzers (DP-MPPCA). We show
its application in teaching a new skill to the Baxter robot online by teleoperation,
where the number of clusters and the subspace dimension of each cluster is incre-
mentally adapted with the streaming data to efficiently encode the acquired skill.

1 Introduction

We are interested in online clustering of high-dimensional streaming data in a non-parametric man-
ner. Let us denote the streaming observation sequence by {ξ1 . . . ξt}, where ξt ∈ R

D is ob-
tained at the current time step t. The corresponding cluster assignment sequence {z1 . . . zt} where
zt ∈ {1 . . .K} belongs to the discrete set of K cluster indices at time t, and the observation ξt
is drawn from a multivariate Gaussian with mixture coefficients πt,i ∈ R, mean µt,i ∈ R

D and

covariance Σt,i ∈ R
D×D at time t. We seek to update the parameters online upon observation of a

new datapoint ξt+1, such that the datapoint can be discarded afterwards. Small variance asymptotic
(SVA) analysis implies that the covariance matrix Σt,i of all the Gaussians reduces to the isotropic

noise σ2, i.e., Σt,i ≈ limσ2→0 σ
2I [4, 2, 5]. In this paper, we present online inference algorithms

based on applying Bayesian non-parametric treatment to Gaussian mixture model (GMM) and mix-
ture of probabilistic principal component analyzers (MPPCA) under SVA.

2 Online DP-GMM

Consider a Bayesian non-parametric GMM with Chinese Restaurant Process (CRP) prior over
the cluster assignment, zt ∼ CRP(α), and non-informative prior over cluster means, µt,i ∼

N (0, ̺2ID). Applying SVA limit Σt,j ≈ limσ2→0 σ
2I to the Gibbs sampler reduces the model

to the DP-means algorithm [4].

Cluster Assignment zt+1: In the online setting, the cluster assignment zt+1 for new datapoint ξt+1
is based on the distance of the datapoint to the existing cluster means. If the minimum distance
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is greater than a certain threshold λ, a new cluster is initialized with that datapoint; otherwise the
assigned cluster prior, mean and the corresponding number of datapointswt+1,zt+1

are incrementally
updated. We can thus write,

zt+1 = argmin
j=1:K+1

{

‖ξt+1 − µt,j‖
2
2, if j ≤ K

λ, otherwise.
(1)

Parameters Update {πt+1,i,µt+1,i}: Given the cluster assignment zt+1 = i, the parameters are

updated as follows with the covariance matrix set to Σt,i = σ2I ,

πt+1,i =
1

t+ 1

(

tπt,i + 1
)

, µt+1,i =
1

wt,i + 1

(

wt,iµt,i + ξt+1

)

, wt+1,i = wt,i + 1. (2)

Loss function L(zt+1,µt+1,zt+1
): The loss function optimized at time step t+ 1 is given as,

L(zt+1,µt+1,zt+1
) = λK + ‖ξt+1 − µt+1,zt+1

‖22 ≤ L(zt+1,µt,zt+1
). (3)

Although attractive for scalability and parsimonious structure, restricting the covariance matrix pa-
rameters to a constant isotropic/spherical noise under small variance asymptotics severely limits the
model from encoding important coordination patterns/variance in the streaming data.

3 Online DP-MPPCA

Consequently, we further assume that the i-th Gaussian groups the observation ξt in its intrinsic

low-dimensional affine subspace of dimension dt,i with projection matrix Λ
dt,i

t,i ∈ R
D×dt,i , such

that dt,i < D and Σt,i = Λ
dt,i

t,i Λ
dt,i

⊤

t,i + σ2I . Under this assumption, we apply the small variance

asymptotic limit on the remaining (D− dt,i) dimensions to encode the most important coordination
patterns while being parsimonious in the number of parameters. Bayesian non-parametric treatment
is used to alleviate the problem of model selection by placing a CRP prior over the cluster assignment

zt as before, and a hierarchical prior over the projection matrix Λ
dt,i

t,i with an exponential prior on

the subspace rank dt,i ∼ rdt,i where r ∈ (0, 1). Applying SVA limit on the resulting partially
collapsed Gibbs sampler leads to an efficient deterministic algorithm for subspace clustering with
an infinite MPPCA [9].

Cluster Assignment zt+1: The cluster assignment zt+1 of ξt+1 in the online case follows the
same principle as in Eq. (1) except the distance is now computed from the subspace of a cluster

dist(ξt+1,µt,i,U
dt,i

t,i )2 =
∥

∥

∥
(ξt+1 − µt,j) − ρjU

dt,j

t,j U
dt,j

⊤

t,j (ξt+1 − µt,j)
∥

∥

∥

2

2
, defined using the dif-

ference between the mean-centered datapoint and the mean-centered datapoint projected upon the

subspace U
dt,i

t,i ∈ R
D×dt,i spanned by the dt,i unit eigenvectors of the covariance matrix, i.e.,

zt+1 = argmin
j=1:K+1







∥

∥

∥
(ξt+1 − µt,j)− ρjU

dt,j

t,j U
dt,j

⊤

t,j (ξt+1 − µt,j)
∥

∥

∥

2

2
, if j ≤ K

λ, otherwise,
(4)

where, ρj = exp
(

−
‖ξt+1−µt,j‖

2
2

bm

)

weighs the projected mean-centered datapoint according to the

distance of the datapoint from the cluster center (0 < ρj ≤ 1). Its effect is controlled by the
bandwidth parameter bm. If bm is large, then the far away clusters have a greater influence; otherwise
nearby clusters are favoured. Note that ρj assigns more weight to the projected mean-centered
datapoint for the nearby clusters than the distant clusters to limit the size of the cluster/subspace.

Parameters Update {πt+1,zt+1
,µt+1,zt+1

, dt+1,zt+1
,Λ

dt+1,zt+1

t+1,zt+1
}: Given the cluster assignment

zt+1 = i, the prior and mean of the assigned cluster are updated according to Eq. (2). The co-
variance matrix could then be updated online as

Σ̄t+1,i =
wt,i

wt,i + 1
Σt,i +

wt,i

(wt,i + 1)2
(ξt+1 − µt+1,i)(ξt+1 − µt+1,i)

⊤. (5)

However, updating the covariance matrix online in D-dimensional space can be prohibitively ex-
pensive for even moderate size problems. To update the covariance matrix in its intrinsic lower

2



dimension, similarly to [1], we compute gt+1,i ∈ R
di as the projection of datapoint ξt+1 onto the

existing set of basis vectors of U
dt,i

t,i . Note that the cardinality of basis vectors is different for each

covariance matrix. If the datapoint belongs to the subspace of U
dt,i

t,i , the retro-projection of the dat-

apoint in its original space, as given by the residual vector pt+1,i ∈ R
D , would be a zero vector;

otherwise the residual vector belongs to the null space of U
dt,i

t,i , and its unit vector p̃t+1,i needs to
be added to the existing set of basis vectors, i.e.,

gt+1,i = U
dt,i

t,i

⊤

(ξt+1 − µt,i), pt+1,i = (ξt+1 − µt,i)−U
dt,i

t,i gt+1,i,

U
dt,i

t+1,i = [U
dt,i

t,i , p̃t+1,i] Rt+1,i, p̃t+1,i =

{ p
t+1,i

‖p
t+1,i

‖
2

, if ‖pt+1,i‖2 > 0

0D, otherwise.
(6)

where U
dt,i

t+1,i ∈ R
D×(dt,i+1) represents the new set of basis vectors augmented with the residual

unit vector p̃t+1,i, and Rt+1,i ∈ R
(dt,i+1)×(dt,i+1) is the rotation matrix used to incrementally

update the augmented basis vectors. Rt+1,i is obtained by substituting the value of Σ̄t+1,i from Eq.

(5) and U
dt,i

t+1,i from Eq. (6) in Σ̄t+1,i = U
dt,i

t+1,i Σ
(diag)
t+1,i U

dt,i

t+1,i

⊤

with Σ
(diag)
t+1,i ∈ R

(dt,i+1)×(dt,i+1)

and solving the reduced eigendecomposition problem of size (dt,i + 1)× (dt,i + 1),

wt,i

wt,i + 1

[

Σ
(diag)
t,i 0dt,i

0
⊤

dt,i
0

]

+
wt,i

(wt,i + 1)2

[

gt+1,i g
⊤

t+1,i νigt+1,i

νig
⊤

t+1,i ν2i

]

= Rt+1,i Σ
(diag)
t+1,i R⊤

t+1,i, (7)

where νi = p̃⊤

t+1,i(ξt+1 − µt+1,i). Solving for Rt+1,i and substituting it in Eq. (6) gives the

required update of the basis vectors U
dt+1,i

t+1,i in a computationally and memory efficient manner. The
subspace dimension of the i-th mixture component is updated by keeping an estimate of the average
distance vector ēt,i ∈ R

D whose k-th element represents the mean distance of the datapoints to

the (k − 1) subspace basis vectors of Uk
t,i for the i-th cluster. Let us denote by δi as the vector

measuring the distance of the datapoint ξt+1 to each of the subspaces of Uk
t,i for the i-th cluster

where k = {0 . . . (dt,i + 1)}, i.e.,

δi =
[

dist(ξt+1,µt+1,i,U
0
t+1,i)

2 . . . dist(ξt+1,µt+1,i,U
dt,i+1
t+1,i )2

]

⊤

, (8)

where dist(ξt+1,µt+1,i,U
0
t+1,i)

2 is the distance to the cluster subspace with 0 dimensions (the clus-

ter mean), dist(ξt+1,µt+1,i,U
1
t+1,i)

2 is the distance to the cluster subspace with 1 dimension (the
line), and so on. The average distance vector ēt+1,i, the subspace dimension dt+1,i, the projection

matrix Λ
dt+1,i

t+1,i , and the covariance matrix Σt+1,i are updated as,

ēt+1,i =
1

wt,i + 1

(

wt,iēt,i + δi

)

, dt+1,i = argmin
d=0:D−1

{

λ1d+ ēt+1,i

}

, (9)

Λ
dt+1,i

t+1,i = U
dt+1,i

t+1,i

√

Σ
(diag)
t+1,i , Σt+1,i = Λ

dt+1,i

t+1,i Λ
dt+1,i

t+1,i

⊤

+ σ2I. (10)

Loss function L(zt+1, dt+1,zt+1
,µt+1,zt+1

,U
dt+1,zt+1

t+1,zt+1
): The loss function at time step t+ 1 is,

L(zt+1, dt+1,zt+1
,µt+1,zt+1

,U
dt+1,zt+1

t+1,zt+1
) = λK+λ1dt+1,zt+1

+dist(ξt+1,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
)2

≤ L(zt+1, dt,zt+1
,µt,zt+1

,U
dt,zt+1

t,zt+1
).

The loss function provides an intuitive trade-off between the fitness term

dist(ξt+1,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
)2 and the model selection parameters K and dk. Increasing

the number of clusters or the subspace dimension of the assigned cluster decreases the distance
of the datapoint to the assigned subspace at the cost of penalty terms λ and λ1. Parameters of the
assigned cluster are updated in a greedy manner such that the loss function is guaranteed to decrease
at the current time step. In case a new cluster is assigned to the datapoint, the loss function at time
t is evaluated with the cluster having the lowest cost among the existing set of clusters. Note that
setting dt,i = 0 by choosing λ1 ≫ 0 gives the same loss function and objective function as the
online DP-GMM algorithm with isotropic Gaussians.
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4 Results, Discussions and Conclusions

Figure 1: Non-parametric online clustering of Z-shaped streaming data under small variance asymp-
totics with: (left) online DP-GMM, (right) online DP-MPPCA.

Figure 2: Teleoperation with learned clusters
on top and evolution of K and dt,k on bottom.

We first evaluate the performance of the algorithms
on a Z-shaped 3-dimensional stream of datapoints
with penalty parameters {λ = 35, σ2 = 100} for
online DP-GMM, and {λ = 14, λ1 = 2, σ2 =
1, bm = 1 × 104} for online DP-MPPCA. Fig. 1
shows that online DP-GMM under small variance
asymptotics fails to represent the variance in the
demonstrations with d = 0, whereas the number
of clusters and the subspace dimension adequately
evolves for online DP-MPPCA to model the under-
lying distribution. We then consider a robotic appli-
cation of performing remote manipulation tasks by
teleoperation. We use the Baxter robot as a mock-
up for teleoperation where the left arm is used as
the input device of the teleoperator and the right
arm is used to perform the task of tracking a mov-
able screwdriver target by teleoperation. Here, we
learn a task-parameterized generative model [6] on-
line to assist the teleoperator in performing the task
based on the variance observed in the teleoperator demonstrations. We use the model to adjust the
robot movement towards low variance segments of the demonstrations as observed from the frame
of reference of the target. After 6 demonstrations of reaching different target poses from different
initial configurations, the learned model contains 3 clusters of subspace dimensions {4, 3, 4} with
D = 14 using penalty parameters {λ = 0.65, λ1 = 0.05, σ2 = 2.5 × 10−4, bm = 100} (see Fig.
2 for segmented clusters and evolution of the model parameters during learning). Note that if the
cluster evolves such that it is closer to another cluster than threshold λ, the two clusters are merged
into one and the subspace of the dominant cluster is retained.

Online learning with DP-MPPCA under SVA does not require computation of numerically unstable
gradients at each iteration and scales well to high-dimensional spaces with its simple deterministic
updates [8]. Non-parametric treatment aids the user to build the model online without specifying
the number of clusters and the subspace dimension of each cluster, as the parameter set grows with
the size of data during learning. The penalty parameters introduced are more intuitive to specify
and act as regularization terms for model selection based on the structure of the data. Note that the
order of streaming data plays an important role during learning, and multiple starts from different
initial configurations lead to different solutions. Alternate strategies to avoid different solutions
include initializing the parameters with a batch algorithm, or updating the parameters sequentially
in a mini-batch manner [3]. The temporal information in the data is incorporated in the model by
online estimation of the state transition and the state duration information in a hidden semi-Markov
model based on hierarchical Dirichlet process (see [7] for more details).

In this paper, we have presented a non-parametric clustering algorithm by online inference in DP-
GMM and DP-MPPCA under small variance asymptotics. The algorithm incrementally clusters the
streaming data with non-parametric locally linear principal component analysis whose redundant
dimensions are discarded autonomously by small variance asymptotics. We showed that the model
efficiently encodes the demonstrations to teach new skills to robots in an online non-parametric
manner.
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