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Abstract

We describe a variational inference method that approximates an intractable target
measure as the pushforward of a tractable distribution (e.g., a Gaussian) through a
transport map. We then show how such transport maps can be decomposed—i.e.,
factorized into the composition of finitely many low-dimensional maps. We use the
notion of decomposable transports to derive new deterministic online algorithms
for Bayesian filtering and smoothing in nonlinear/non-Gaussian state-space models
with static parameters, and illustrate the theory on a stochastic volatility model.

1 Measure transport and variational inference

Let Z be a random variable on Rn endowed with an intractable continuous density π that we wish
to simulate. We assume that π is available only up to a normalizing constant. For instance, π may
represent the posterior density of a Bayesian inference problem, where the goal is to approximate
integrals of the form

∫
g(z) · π(z) dz for some measurable g : Rn → R. One possible approach

to the problem of sampling is to seek a deterministic (transport) map T : Rn → Rn that couples
a tractable reference random variable X of density η (e.g., a standard normal) with Z [15]. The
coupling ensures that T (X) = Z in distribution [30], or, equivalently, that T pushes forward η to π,
i.e., T]η = π, where T]η denotes the pushforward density of η by T . (For any invertible map T , we
have T]η(z) = η(T−1(z)) · |det∇T−1(z)|, where ∇T (z)−1 ∈ Rn×n denotes the gradient of the
inverse map at z.) Thus, if X1, . . . ,Xn is an independent and identically distributed (iid) sample
from η, then T (X1), . . . , T (Xn) is an iid sample from π. In other words, T enables the generation
of cheap, independent, and unweighted samples from π by pushing forward a collection of reference
samples through the map. Clearly, a transport map between a tractable density η and the target π
turns π into a tractable distribution and solves, at least formally, the problem of sampling.

A transport map between random variables on Rn exists under very weak conditions. For instance,
in the example above it suffices that the law of X vanishes on subsets of (Hausdorff) dimension
n − 1 [16]. As shown in [18], the transport map can be computed via deterministic optimization
by minimizing the Kullback–Leibler (KL) divergence DKL(T]η ||π ) over a suitable function space
for the map, i.e., for T ∈ T . At optimality, we have T]η = π. In practice, we need to represent
the transport. The approach adopted in [18, 20] seeks a parametric transport map within a finite
dimensional approximation space, Th ⊂ T . The resulting variational problem reads as:

min
T∈Th

DKL(T]η ||π ). (1.1)

We can interpret (1.1) as seeking a density q that minimizes DKL( q ||π ) over a finite dimensional
class of tractable distributions, Q, which consists of distributions q = T]η that can be written as
the pushforward of η by a map in Th. Thus, (1.1) defines a particular variational inference method
[6, 31, 2]: one that uses measure transport to characterize the class of approximating distributions
Q (see [29, 22] for related methods). The richer the function space for the map, the richer Q. In
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particular, a general parameterization of the map can capture arbitrary probabilistic interactions [18],
well beyond the usual mean-field approximation [19, 21, 27].

A key feature of this approach is that it produces a transport map T and not just an approximation,
T]η, to the target density. This idea becomes very useful when T is only approximate. In this case,
if the bias of approximating π with T]η is unacceptable, one can simply evaluate (possibly up to
a normalizing constant) the pullback density T ]π, defined as T ]π(x) = π(T (x)) · | det∇T (x)|,
and rewrite the integral

∫
g(z) · π(z) dz as

∫
g(T (x)) · T ]π(x) dx. One possibility is then to use

a stochastic sampling technique, like MCMC [23], to probe T ]π, which, by virtue of (1.1), will
be closer (in KL divergence) to the reference density η. In particular, if η is Gaussian, then we
could interpret pulling back π by T as a “Gaussianization” of the target [13], which can remove
the correlations that make sampling a challenging task. Thus, we can regard an approximate T as a
preconditioner for existing sampling schemes [20, 17, 32].

There are infinitely many transports that push forward one density to another [30]. An important
transport for our analysis is the Knothe-Rosenblatt (KR) rearrangement in Rn [24, 10]. For a pair
of continuous densities, η and π, the KR rearrangement is the unique monotone increasing (lower)
triangular transport that pushes forward η to π [3]. A lower triangular transport T : Rn → Rn is a
multivariate map whose kth component depends only on the first k input variables, i.e.,

T (x) =


T 1(x1)
T 2(x1, x2)
...
Tn(x1, x2, . . . xn)

 ∀x = (x1, . . . , xn) ∈ Rn, (1.2)

where T k denotes the kth output of the map. The KR rearrangement is general—it can couple
arbitrary continuous densities—and enjoys many attractive computational features. As shown in
[18, 15], it can be characterized as the unique minimizer of DKL(T]η ||π ) over the cone T4 of
triangular maps that are monotone increasing with respect to the lexicographic order on Rn. In this
case, (1.1) is equivalent to:

min −Eη[log π̄(T (X)) +
∑
k

log ∂xk
T k(X)− log η(X)] (1.3)

s.t. T ∈ T4,h ⊂ T4; dim(T4,h) <∞

where π̄ denotes the unnormalized target density. In particular, by using monotone parameterizations
for T , we can regard (1.3) as an unconstrained stochastic program [15, 9, 12, 28].

2 Decomposable transports

The key observation of this work is that a transport map is not just any multivariate function on Rn.
There exist transports which inherit low-dimensional parameterizations from the Markov structure
[14, 11] of the underlying target density. By considering recursive graph decompositions of a (non-
complete) Markov network for π, it is possible to prove the existence of transports T that factorize
exactly as the composition of k low-dimensional maps, T = T1 ◦ · · · ◦ Tk, for some finite k, where
each map Tj differs from the identity function only along few components and is triangular up to
a permutation of the input and output space. We call such transports decomposable. Clearly, a
decomposable transport is easier to parameterize than a regular one. Moreover, the decomposition
T = T1 ◦ · · · ◦Tk suggests that the computation of T may be broken into multiple simpler steps, each
associated with the computation of a low-dimensional map Tj that accounts only for local features of
π. Instead of detailing the general theory of decomposable transports, due to the length constraints
of this manuscript we will explore this theory in the context of sequential Bayesian inference for
state-space models (see Section 3). Our analysis, in this setting, will suggest new and powerful
variational algorithms for the Bayesian filtering and smoothing problems.

3 Online algorithms for Bayesian filtering and smoothing

We consider the problem of sequential Bayesian inference for a discrete time, continuous, nonlinear,
non-Gaussian state-space model [4] in a very general formulation that includes hyperparameters (i.e.,
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static parameters) of the model. See Figure 1 for the corresponding Markov structure, where (Zk)k≥0
denotes the unobserved latent Markov process (each Zk is a random variable on Rn), (Y k)k≥0
denotes the observed process, and where Θ represents the hyperparameters of the model, which are
treated as a random variable on Rp. The state-space model is then fully specified in terms of the
conditional densities πY k|Zk,Θ, πZk+1|Zk,Θ, πZ0|Θ, and the marginal density πΘ, together with the
observed data (yk)k≥0. We assume these are all given.

Z0 Z1 Z2 Z3 ZN

Y 0 Y 1 Y 2 Y 3 Y N

Θ

Figure 1: Markov structure of πΘ,Z0:N |Y 0:N
for a fixed realization of the observed process.

We wish to jointly infer the hidden states and the hyperparameters of the model as observations of
the process (Y k)k≥0 become available over time. That is, the goal of inference is to characterize—
sequentially in time and via a recursive algorithm—the posterior distribution,

πΘ,Z0,...,Zk|Y 0,...,Y k
(3.1)

for all k ≥ 0, from which any filtering distributions πZk|Y 0:k
or smoothing distributions πZj |Y 0:k

with j < k, along with the parameter marginals πΘ|Y 0:k
, are readily available [4, 26].

The key result of this section is a new deterministic and recursive algorithm for online inference
with transport maps, which, in a single forward pass, computes a sequence of triangular maps of
fixed dimension (2n + p) that, properly composed, are capable of sampling (3.1) for all k ≥ 0.
Unlike most smoothing algorithms, the present algorithm does not resort to any backward pass
that touches the state-space model. This is essentially the content of the forthcoming theorem (see
Appendix B for a proof). In what follows, let (ηXk

)k≥0 be a sequence of independent reference
densities on Rn (e.g., standard normals) and let ηXΘ

be a reference density on Rp. Moreover, let (ηk)
and (π̃k) be sequences of densities on R2n+p defined as follows in terms of the state-space model:
ηk := ηXΘ,Xk,Xk+1

for k ≥ 0, π̃0 := πΘ,Z0,Z1|Y 0,Y 1
, and π̃k := πZk+1,Y k+1|Θ,Zk

for k > 0.

Theorem 3.1 Consider a sequence (Mk) of (block) triangular maps on R2n+p with sparsity pattern

Mk(xθ,xk,xk+1) =

 MΘ
k (xθ)

M0
k(xθ,xk,xk+1)

M1
k(xθ,xk+1)

 , (3.2)

and defined, recursively, as follows: M0 pushes forward η0 to π0 := π̃0; For k ≥ 1, Mk pushes
forward ηk to πk(xθ,xk,xk+1) := ηXΘ,Xk

(xθ,xk) · π̃k(TΘ
k−1(xθ),M

1
k−1(xθ,xk),xk+1)/ck,

where ck is a normalizing constant, and where TΘ
j := MΘ

0 ◦ · · · ◦MΘ
j for all j ≥ 0. Then, for all

k ≥ 0, the composition of transports Tk := T0 ◦ · · · ◦ Tk, where each Tj is defined (blockwise) as:

Tj(xθ,x0, . . . ,xk+1) =



MΘ
j (xθ)

x0

...
xj−1
M0
j (xθ,xj ,xj+1)

M1
j (xθ,xj+1)

xj+2

...
xk+1


, (3.3)

pushes forward η0:k := ηXΘ
·
∏k+1
j=0 ηXj

to the desired target density πΘ,Z0:k+1|Y 0:k+1
.
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Theorem 3.1 suggests a deterministic online algorithm for the joint parameter and state estimation
problem: compute1 the sequence of maps (Mj), each of dimension 2n+ p; embed them into higher-
dimensional identity maps to form (Tj); then evaluate Tk := T0 ◦ · · · ◦ Tk to sample directly from
πΘ,Z0:k+1|Y 0:k+1

and obtain information about any smoothing or filtering distribution of interest.
The theorem shows that each πΘ,Z0:k+1|Y 0:k+1

can be represented via a decomposable transport Tk;
successive transports in the sequence (Tk)k≥0 are nested and thus ideal for online inference. The
variational and online character of the proposed algorithm distinguishes it from existing state-of-the-
art approaches to nonlinear and non-Gaussian smoothing and joint parameter inference [1, 7].

4 Numerical example: stochastic volatility model with hyperparameters

Following [8, 25], we model the scalar log-volatility (Zt) of the return of a financial asset at time
t = 1, . . . , N using an autoregressive process of order one, which is fully specified by Zt+1 =
µ+φ (Zt−µ)+ ηt, for all t ≥ 0, where ηt ∼ N (0, 1) is independent of Zt, Z0|µ, φ ∼ N (µ, 1

1−φ2 ),
and where φ and µ represent scalar hyperparameters of the model. In particular, µ ∼ N (0, 1) and
φ = 2 exp(φ?)/(1 + exp(φ?)) − 1 with φ? ∼ N (3, 1). We define Θ := (µ, φ). The process (Zt)
and parameters Θ are unobserved and must be estimated from an observed process (Y t), which
represents the mean return of holding the asset at time t, Y t = εt · exp( 1

2Zt), where εt is a standard
normal random variable independent of Zt. As a dataset, we use the N = 100 daily differences
of the pound/dollar exchange rate starting on 1 October 1981 [25, 5]. Our goal is to sequentially
characterize πΘ,Z0:k|Y 0:k

, for all k = 0, . . . , N , as observations of (Y t) become available. The
Markov structure of πΘ,Z0:N |Y 0:N

matches Figure 1. We solve the problem using the algorithm
introduced in Section 3: we compute a sequence, (Mj)

N−1
j=0 , of four-dimensional transport maps

(n = 1 and p = 2) according to their definition in Theorem 3.1 and using the variational form (1.3).
All reference densities are standard Gaussians. Then, for any k < N , if we want to sample from
πΘ,Z0:k+1|Y 0:k+1

, we simply embed (Mj)j≤k into an identity map to form the (Tj)j≤k defined in
(3.3), and push forward reference samples from η0:k through Tk := T0 ◦ · · · ◦ Tk (see Theorem
3.1). Moreover, a simple corollary of Theorem 3.1 shows that the map TΘ

k = MΘ
0 ◦ · · · ◦MΘ

k

pushes forward ηXΘ
to the marginal πΘ|Y 0:k+1

, for all k ≥ 0, whereas the map M1
k pushes forward

ηXΘ
· ηXk+1

to the filtering distribution πZk+1|Y 0:k+1
. (MΘ

k and M1
k were defined in (3.2).) Figure

2 illustrates the solution of the inference problem, with additional results in Appendix A.
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Filtering marginals of µ
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Filtering
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Figure 2: (left) At each time k, we illustrate the {5, 25, 40, 60, 75, 95}–percentiles (shaded regions)
and the mean (black solid line) of the posterior distribution of the hyperparameter µ, i.e., πµ|Y 0:k

,
for k = 0, . . . , N . (right) Similarly, at each time k, we illustrate the mean (solid curves) and
the {5, 95}–percentiles (shaded regions) of the filtering distribution πZk|Y 0:k

(in blue) and of the
marginals πZk|Y 0:N

of the full smoothing distribution (in red), for k = 0, . . . , N .

1 Notice that Mk in (3.2) is lower triangular up to a permutation of the input and output space, and thus it can
be easily computed via (1.3) [15]. Its particular sparsity pattern, however, is required for the theorem to hold.
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A Additional results for the stochastic volatility model of Section 4

Here we provide additional figures that illustrate the transport-based solution of the joint state–
parameter inference problem described in Section 4. Captions explain each figure.
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Figure 3: (left) Same as in Figure 2 (left), but for the hyperparameter φ. (right) Black dots represent the
observed data (yk)Nk=0. Moreover, at each time k, we illustrate the {5, 25, 40, 60, 75, 95}–percentiles
(shaded regions) of the posterior predictive distribution, i.e., the distribution of Y k conditioned on
the event {Y 0:N = y0:N}, for k = 0, . . . , N .
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Figure 4: (left) Posterior marginal of µ, i.e., πµ|Y 0:N
. (right) Posterior marginal of φ, i.e., πφ|Y 0:N

.

Random conditionals

Figure 5: Randomly chosen two-dimensional conditionals of the pullback of πΘ,Z0:N |Y 0:N
by the

numerical approximation of TN−1 := T0 ◦ · · · ◦ TN−1. (See the definitions of these quantities in
Theorem 3.1.) Since we use a standard normal reference distribution, the numerical approximation of
TN−1 should be regarded as satisfactory if the pullback density (TN−1)]πΘ,Z0:N |Y 0:N

is close to a
standard normal, as it is here.
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B Proofs of the main results

Proof of Theorem 3.1. Let c0 :=
∫
π̃0(x) dx, and define a sequence of maps (T̃k) as:

T̃k(xθ,xk+1) =

[
TΘ
k (xθ)

M1
k(xθ,xk+1)

]
, T̃k : Rn+p → Rn+p, (B.1)

for all k ≥ 0. We first prove that ck <∞ and that (T̃k)] (ηXΘ
· ηXk+1

) = πΘ,Zk+1|Y 0:k+1
, for all

k ≥ 0, using an induction argument over k. For the base case, just notice that c0 = 1 since π̃0 is a prob-
ability density. Thus, (M0)] η

0 = π0 is well defined, and by (3.2) it must be that T̃0 pushes forward
ηXΘ

· ηX1
to the marginal

∫
π0(xθ,x0,x1) dx0 =

∫
πΘ,Z0,Z1|Y 0,Y 1

(xθ,x0,x1|y0,y1) dx0 =

πΘ,Z1|Y 0,Y 1
(xθ,x1|y0,y1). (Notice that, by definition, TΘ

0 ≡ MΘ
0 .) Now assume that ck < ∞

and that (T̃k)] (ηXΘ
· ηXk+1

) = πΘ,Zk+1|Y 0:k+1
for a fixed k. Then:

ck+1 =

∫
ck+1 · πk+1(xθ,xk+1,xk+2) dxθ dxk+1dxk+2 (B.2)

= πY k+2|Y 0:k+1
(yk+2|y0:k+1) <∞.

Moreover, notice that T̃k+1 can always be written as T̃k+1 = Ak+1 ◦Bk+1, where:

Ak+1(xθ,xk+2) =

[
TΘ
k (xθ)

xk+2

]
, Bk+1(xθ,xk+2) =

[
MΘ
k+1(xθ)

M1
k+1(xθ,xk+2)

]
, (B.3)

and that (T̃k+1)] (ηXΘ
· ηXk+2

) = πΘ,Zk+2|Y 0:k+2
if and only if (Bk+1)] (ηXΘ

· ηXk+2
) =

A]k+1 πΘ,Zk+2|Y 0:k+2
. By definition of Mk+1,Bk+1 must push forward ηXΘ

·ηXk+2
to the marginal∫

πk+1(xθ,xk+1,xk+2) dxk+1. A simple calculation shows that:∫
πk+1(xθ,xk+1,xk+2) dxk+1 =

πΘ,Zk+2|Y 0:k+2
(zΘ,xk+2|y0:k+2)

|∇(TΘ
k )−1(zΘ)|

= A]k+1 πΘ,Zk+2|Y 0:k+2
(xθ,xk+2|y0:k+2),

where zΘ := TΘ
k (xθ), and concludes the induction argument. Since ck < ∞ for all k ≥ 0, the

sequence of maps (Mk) is well defined, and so is (Tj)
k
j=0. Now, we can finally prove the theorem

using another induction argument over k ≥ 0. For the base case, notice that T0 = T0 = M0, and
that, by definition, M0 pushes forward η0 to π0 = πΘ,Z0,Z1|Y 0,Y 1

. Now assume that Tk pushes
forward η0:k to πΘ,Z0:k+1|Y 0:k+1

for a fixed k, and notice that

πΘ,Z0:k+2|Y 0:k+2
= πΘ,Z0:k+1|Y 0:k+1

·
πY k+2|Zk+2,Θ · πZk+2|Zk+1,Θ

πY k+2|Y 0:k+1

. (B.4)

Thus, for a given Tk+1, it must be that

T]k+1 πΘ,Z0:k+2|Y 0:k+2
= T ]k+1

(
T]k πΘ,Z0:k+1|Y 0:k+1

· πk+1

ηXΘ
· ηXk+1

)
(B.5)

= T ]k+1

 k∏
j=0

ηXj
· πk+1


=

k∏
j=0

ηXj
·M]

k+1π
k+1 = η0:k+1

Hence, (Tk+1)] η
0:k+1 = πΘ,Z0:k+2|Y 0:k+2

, concluding the induction argument and the proof of the
theorem. �
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