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Abstract

We propose a neural network framework for high-dimensional conditional density
estimation. The Bottleneck Conditional Density Estimator (BCDE) is a variant of
the conditional variational autoencoder (CVAE) that employs layer(s) of stochastic
variables as the bottleneck between the high-dimensional input x and target y. The
key to effectively train BCDEs is the hybrid blending of the conditional generative
model with a joint generative model that leverages unlabeled data to regularize the
conditional model. Using multiple stochastic layers as the bottleneck also allows
us to impose an independence prior (x and y are independent a priori) to prevent
overfitting when we only have access to a small number of labeled data. We show
that the BCDE significantly outperforms the CVAE in MNIST quadrant prediction
benchmarks in the fully supervised case and establishes new benchmarks in the
semi-supervised case.

1 Introduction

Conditional density estimation (CDE) refers to the problem of estimating a conditional density
p(y | x) for the input vector x and target vector y. In CDE, y is typically continuous or high-
dimensional, as opposed to a discrete class label, and we wish to estimate the full conditional density,
as opposed to its conditional mean or mode.

Classical non-parametric conditional density estimators typically rely on local Euclidean distance
in the original input and target space, and thus, quickly become ineffective in high-dimensions [2].
For high-dimensional CDE tasks, conditional variational autoencoders (CVAEs) have been proposed
[14] and applied to a variety of problems, such as MNIST quadrant prediction, segmentation [14],
attribute-based image generation [16], and machine translation [17]. However, CVAEs suffer from
two major statistical deficiencies: 1) they inherently do not learn the distribution of the input x and 2)
are unable to leverage unlabeled data. For many conditional density estimation tasks, the acquisition
of labeled points is costly, motivating the need for semi-supervised CDE. While variational methods
[6, 11] have been applied to semi-supervised classification (where y is simply a class label) [7, 9],
semi-supervised CDE (where y is high-dimensional) remains an open problem.

We focus on a set of deep conditional generative models, which we call them bottleneck conditional
density estimators (BCDEs). In BCDEs, the input x only influences the target y via layers of
bottleneck stochastic variables z = {zi} in the conditional generative path. The BCDE naturally has a
joint generative sibling model, where the bottleneck z generates x and y independently, a key feature
that enables semi-supervised learning. Following [8], we propose a hybrid training framework that
regularizes the conditionally-trained BCDE parameters toward the jointly-trained BCDE parameters.
To reduce overfitting in label-sparse settings, we additionally regularize the jointly-trained BCDE
parameters toward the prior belief that x and y are independent.

Using our BCDE hybrid training framework, we show that 1) BCDE significantly outperforms CVAE
in fully supervised CDE, 2) hybrid training is important for good conditional density estimation in
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both supervised and semi-supervised cases, and 3) the independence prior is important when labeled
data are sparse. Finally, we 4) establish new benchmarks for semi-supervised CDE.

2 Methods

CVAE. In [14], the authors introduced the conditional version of variational autoencoders by consid-
ering a directed probabilistic model, where the latent variable z and data distribution of y are both
conditioned on the input x. The conditional generative path is

z ∼ pθ(z | x) = N (z | µθ(x), diag(σ2
θ(x))), (1)

y ∼ pθ(y | x, z) = f(y;x, z, θ), (2)

where θ denotes the parameters of the neural networks µθ(·), σ2
θ(·), and the decoder f(·). The

conditional generative model is trained using the auto-encoding variational Bayes (AEVB) algorithm
[6, 11] by introducing the recognition model qφ(z | x, y) = N

(
z | µφ(x, y), diag

(
σ2
φ(x, y)

))
and

maximizing the amortized-variational lower-bound of the conditional log-likelihood.

BCDE. For the bottleneck conditional density estimator, we enforce the behavior that X ⊥ Y | Z.
Consequently, z serves as a bottleneck in the generative path from x to y. Conditional training of
BCDE (Fig. 1d) maximizes the variational lower-bound C(·) as

ln pθ(y | x) ≥ C(θ, φ;x, y) = Eqφ(z|x,y)
[
ln
pθ(z | x)pθ(y | z)

qφ(z | x, y)

]
. (3)

The BCDE is a conditional generative model (Fig. 1d). However, due to the bottleneck, it has a
joint generative sibling (Figs. 1a to 1c), where the bottleneck variables z point to x and y. Thus, the
variational lower-bound of the joint model is

ln pθ′(x, y) ≥ Jxy(θ′, φ′;x, y) = Eqφ′ (z|x,y)
[
ln
p(z)pθ′(x | z)pθ′(y | z)

qφ′(z | x, y)

]
. (4)

We use {θ′, φ′} to indicate the parameters of the joint model and reserve {θ, φ} for the BCDE
parameters. For samples where x or y is unobserved, we will need to compute the variational
lower-bound for the marginal likelihoods. If x were to directly influence y, marginalizing out the
unobserved x is potentially intractable. By exploiting the bottleneck, the conditional independence of
x and y given z guarantees a tractable variational lower-bound for the marginal likelihoods

ln pθ′(x) ≥ Jx(θ′, φ′;x) = Eqφ′ (z|x)
[
ln
p(z)pθ′(x | z)
qφ′(z | x)

]
, (5)

ln pθ′(y) ≥ Jy(θ′, φ′; y) = Eqφ′ (z|x)
[
ln
p(z)pθ′(y | z)
qφ′(z | y)

]
. (6)

Unlike the conditionally-trained BCDE, the jointly-trained BCDE imposes the constraint that the
inference of z given x is sensitive to the distribution of x, since z takes on the additional task of
reconstructing x. Therefore, we hypothesize that regularizing the conditionally-trained BCDE with
the jointly-trained BCDE provides the following benefits: 1) learning the distribution of x makes the
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Figure 1: The joint and conditional components of a 2-layer BCDE. Dotted lines represent recognition
models. Colors indicate the parameters that are strictly tied within the joint model and softly tied
between the joint and conditional models.
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inference of z given x robust to perturbations in the input, 2) regularizing the conditional toward
the joint encourages z to rely on representations that jointly encode x and y. In the semi-supervised
regime, joint-regularization confers the additional benefit of influencing BCDE with unlabeled points.

We now describe our approach for regularizing the conditionally-trained BCDE with the jointly-
trained BCDE. For notational simplicity, we denote the overall conditional and joint training objectives
respectively as

C(θ, φ) =
∑
x,y∈L

C(θ, φ;x, y), (7)

J (θ′, φ′) =
∑
x,y∈L

Jxy(θ′, φ′;x, y) +
∑
x∈Ux

Jx(θ′, φ′;x) +
∑
y∈Uy

Jy(θ′, φ′; y), (8)

where L is a dataset of paired (x, y) samples, and Ux and Uy are data sets of unpaired samples. To
regularize the conditionally-trained BCDE, we introduce a hybrid training objective that softly ties
the conditional to the joint,

H(θ, φ, θ′, φ′) = C(θ, φ) + J (θ′, φ′)− Λ(θ, φ, θ′, φ′)− I(θ′), (9)

where Λ regularizes the conditionally-trained (θ, φ) toward the joint generatively-trained (θ′, φ′), and
I encourages independence between x and y by regularizing pθ′(z2 | z1) toward the unit Gaussian.
Details about how {θ, φ} is tied to {θ′, φ′} is shown in Figure 1. It is important to note that q(z1|x)
(Fig. 1a) is tied to p(z1|x) (Fig. 1d).

Note that Λ and I regularization can be achieved in a variety of ways. In our experiments, we
implement Λ regularization by initializing the conditional model with the joint model parameters
and performing early-stopping, and implement I regularization by initializing the joint model with
auto-encoding parameters. In Figure 1c, this is done by severing the link between z1 and z2, and
independently auto-encoding x with z1 and y with z2. Thus, independence prior requires k ≥ 2
stochastic layers of z.

When k ≥ 2, we build our recognition model using top-down inference [4]. Using 2-layer BCDE as
an example, top-down inference allows us to exploit the conditional independence Z2 ⊥ X | Z1,

q(z2, z1 | x, y) = q(z1 | x, y)q(z2 | z1, y), (10)
q(z2 | z1, y) ∝ p(z2 | z1)`(z2 | y), (11)

where `(z2 | y) is the normalized likelihood of z2 given y. Thus, the distribution parameters for
q(z2 | z1, y) can be computed by combining p(z2 | z1) and `(z2 | y) in the natural parameter space
according to [4]. This not only simplifies the training of k-layer BCDE, the involvement of p(z2 | z1)
in the computation of q(z2 | z1, y) also confers an interesting behavior: when the independence prior
is applied to p(z2 | z1), it also directly regularizes the variational approximation q(z2 | z1, y).

3 Results

We chose the MNIST quadrant task as our benchmark task [13]. The number of unpaired x and
y training samples is always kept at 50, 000, but number of labeled training data is reduced to
5, 000 for the semi-supervised task. The labeled data were randomly sub-sampled such that it was
distributed evenly across classes. The MNIST digits were statically binarized by sampling the
Bernoulli distribution [12]. The validation set is always kept at one-fifth of the size of the labeled
training set. The test set is kept at 10, 000 as usual.

We compare hybridly-trained BCDE against CVAE as well as variants of Eq. (9): conditional training
(C only), naïve pre-training (without Jxy and I), hybrid (without I), and hybrid + independence (full
Eq. (9)). We optimized the various training objectives with Adam [5], using a learning rate of 0.001.
Training was terminated using early-stopping on a validation set. We use multi-layered perceptrons
(MLPs) for all neural networks in BCDE. All MLPs are batch-normalized [3] and parameterized with
two hidden layers of 500 rectified linear units. All stochastic layers have 50 hidden units. The models
were implemented in Python using Theano [15] and Keras [1].

Our results in the MNIST quadrant prediction tasks (Table 1) demonstrate that BCDE obtains state-
of-the-art performance in supervised MNIST quadrant prediction (full 50k labels), and performs well
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Models Supervised 50k Semi-sup. 5k labeled pairs

1-quad 2-quad 3-quad 1-quad 2-quad 3-quad

2-layer VAE (y only) 67.11 49.71 25.03 67.11 49.71 25.03
CVAE [14] 63.91 44.73 20.95 - - -

1-layer BCDE (conditional only) 64.58 45.26 20.91 77.28 54.17 24.83
2-layer BCDE (conditional only) 62.45 43.83 20.52 72.17 50.61 23.48

1-layer BCDE (naïve pre-training) 63.95 44.59 20.65 70.03 49.34 22.99
2-layer BCDE (naïve pre-training) 62.21 43.67 20.45 67.49 47.77 22.71

1-layer BCDE (hybrid) 63.64 44.34 20.43 69.64 49.35 23.21
2-layer BCDE (hybrid) 61.79 43.14 19.93 67.74 47.39 21.93
2-layer BCDE (hybrid+independence) 62.14 43.46 20.03 66.72 46.81 21.63

Table 1: We report the test set negative conditional log-likelihood scores for the MNIST quadrant
prediction task [13]. In addition to the baselines (CVAE), we perform an ablation study of the BCDE
objective Eq. (9) and consider its variants. Note that the 2-layer BCDE generally outperforms 1-layer
BCDE due to having a more expressive variational family [4, 10].

(a) Hybrid (b) Conditional (c) Hybrid (d) Conditional

Figure 2: Comparison of conditional image generation for conditional versus hybrid 2-layer BCDE
on the semi-supervised 1-quadrant task (2a-2b). Row 1 shows the original images. Rows 2-10 show
nine attempts by each model to sample y according to x (the bottom-left quadrant, indicated in gray).
Hybrid training yields better-looking samples and a higher-entropy conditional generative model (as
can be seen from columns 1 and 2). Comparison of interpolation of y for hybrid versus conditional
2-layer BCDE on the fully-supervised top-down task (2c-2d). The top-region x shown in gray is used
to predict the bottom-region y shown in black. Interpolation was performed in the space of z1 and the
resulting y was generated. The top-down task was chosen for easier visual comparison. To facilitate
comparison, the interpolation of x was also created and shown in gray.

in the new semi-supervised task (with only 5k labels). The ablation study shows the importance of
hybrid training, and of the independence prior in the semi-supervised case. Visual analysis reveals
that hybrid-training produces a higher-entropy and more accurate generator (Figs. 2a-2b). Since
hybrid training regularizes BCDE toward the joint model, which learns z1 as a manifold of x, it is
possible to interpolate between two different x’s in the space of z1 for the hybridly-trained BCDE
and project the resulting y (Fig. 2c). The conditionally-trained BCDE, which does not explicitly learn
a manifold of x, fails to generate a meaningful interpolation (Fig. 2d).

4 Conclusion

We have described a hybrid-training framework that regularizes a conditionally-trained neural vari-
ational conditional density estimator with a generatively-trained joint density estimator. When the
number of labeled training data is small, we provide an additional regularizer that imposes an in-
dependence prior. When the independence prior is used in combination with top-down inference,
we directly regularize both the generative and inference models. Our approach thus extends high-
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dimensional conditional density estimation to the semi-supervised learning regime. Future work
includes applying the proposed technique to other high-dimensional CDE tasks.
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