
Modular construction of Bayesian inference algorithms
Adam Ścibior1,2, Zoubin Ghahramani1

University of Cambridge1, MPI Tübingen2

Outline

Implementing inference algorithms is difficult
I new algorithms often build on existing ones
I modularity in implementation helps with prototyping
I we can achieve modularity with monad transformers
I easier to implement, easier to test
I proof-of-concept library in Haskell

Probability monads

A probability monad has the following interface:
I create a Dirac distribution
I apply the sum rule or the product rule
I draw a random variable from a simple distribution
I accumulate likelihood

This is sufficient to interpret any probabilistic program.

Illustration

Sampler

Sequential

Population

Sampler

Population

inference 
code

interpretation sampling 

output 

Building blocks

Layers (monad transformers)

Sampler pseudo-random sampler (no conditioning)

Weighted accumulates likelihood as a weight

Enumerator exhaustively enumerates discrete variables

Population maintains a population of weighted values

Sequential suspendable models (e.g. time series)

Trace maintains the full execution trace

Conditional conditions on selected variables

Prior discards all observations

Rejection rejects configurations with zero likelihood

Inference transformations

sampleIO :: Samp a -> IO a draw a sample

weighted :: Weig m a -> m (a,R) importance sample

enumerate :: Enum m a -> m [(a,R)] enumerate discrete

spawn :: Int -> Pop m a -> Pop m a expand population

resample :: Pop m a -> Pop m a simple resampling

collapse :: Pop m a -> m a pick one value

advance :: Seq m a -> Seq m a one step forward

finish :: Seq m a -> m a run to the end

mhStep :: Tr m a -> Tr m a single mh step

marginal :: Tr m a -> m a discard trace

conditional :: [R] -> Con m a -> m a conditional dist

density :: [R] -> Con m a -> m R pseudo-density

prior :: Pri m a -> m a prior distribution

rejection :: Rej m a -> m a rejection sampling

Composition of inference algorithms

smc :: Int -> Int -> Seq (Pop Samp) a -> Pop Samp a

smc k n = marginal . flatten . step ^ k . init where

init = hoistS (spawn n)

step = advance . hoistS resample

smcrm :: Int -> Int -> Seq (Tr (Pop Samp)) a -> Pop Samp a

smcrm k n = marginal . flatten . step ^ k . init where

init = hoistS (hoistT (spawn n))

step = advance . hoistS (mhStep . hoistT resample)

Example: different interpretations of the same model

model :: MonadBayes m => m Bool

model = do

b <- bernoulli 0.4

x <- if b then normal 0 1 else beta 1 1

observe x == 0.5

return b

model :: MonadBayes m => Seq (Pop m) Bool

model = do

b <- bernoulli 0.4

w = if b then normalPDF 0 1 0.5 else betaPDF 1 1 0.5

suspend

return [(b,w)]

model :: Weighted Sampler Bool

model = \rng ->

b = sample rng (bernoulli 0.4)

w = if b then normalPDF 0 1 0.5 else betaPDF 1 1 0.5

return (b,w)

model :: Enum Bool

model = [(True, 0.14), (False, 0.6)]

Deterministic testing

I MH kernel preserves the posterior

enumerate model == enumerate (model >>= kernel)

I SMC does not introduce bias

enumerate model == enumerate (collapse (smc k n model))

Future work

I more building blocks
I new inference algorithms
I implementation in other languages
I performance evaluation

ams240@cam.ac.uk https://github.com/adscib/monad-bayes


