Modular construction of Bayesian inference algorithms

Adam Ścibior^{1,2}, Zoubin Ghahramani¹ University of Cambridge¹, MPI Tübingen²

Outline

Implementing inference algorithms is difficult

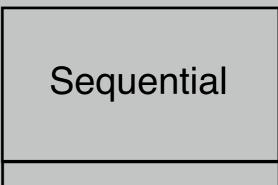
- new algorithms often build on existing ones
- modularity in implementation helps with prototyping
- we can achieve modularity with monad transformers
- easier to implement, easier to test
- proof-of-concept library in Haskell

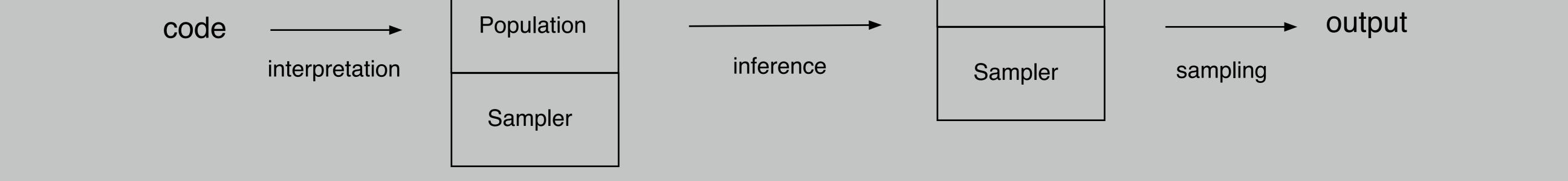
Probability monads

- A probability monad has the following interface:
- create a Dirac distribution
- apply the sum rule or the product rule
- draw a random variable from a simple distribution
- accumulate likelihood

This is sufficient to interpret any probabilistic program.

Illustration





Building blocks

Layers (monad transformers)

Sampler	pseudo-random sampler (no conditioning)
Weighted	accumulates likelihood as a weight
Enumerator	exhaustively enumerates discrete variables
Population	maintains a population of weighted values

Sequential	suspendable models (e.g. time series)
Trace	maintains the full execution trace

Conditional conditions on selected variables

Inference transformations

sampleIO	•••	Samp a -> IO a
weighted	: :	Weig m a -> m (a,R)
enumerate	•••	Enum m a \rightarrow m [(a,R)]
spawn	•••	Int -> Pop m a -> Pop m
resample	•••	Pop m a -> Pop m a
collapse	•••	Pop m a -> m a
advance	•••	Seq m a -> Seq m a
finish	•••	Seq m a -> m a
mhStep	•••	Trma -> Trma
marginal	•••	Trma ->ma
conditional	•••	$[R] \rightarrow Con m a \rightarrow m a$
density	•••	[R] \rightarrow Con m a \rightarrow m R

draw a sample importance sample enumerate discrete expand population simple resampling pick one value one step forward run to the end single mh step discard trace conditional dist pseudo-density

a

Prior	discards all observations	
Rejection	rejects configurations with zero likelihood	

prior	::	Pri	m	a	-> m a
rejection	•••	Rej	m	а	-> m a

prior distribution rejection sampling

Composition of inference algorithms

```
smc :: Int -> Int -> Seq (Pop Samp) a -> Pop Samp a
smc k n = marginal . flatten . step ^ k . init where
init = hoistS (spawn n)
step = advance . hoistS resample
```

smcrm :: Int -> Int -> Seq (Tr (Pop Samp)) a -> Pop Samp a
smcrm k n = marginal . flatten . step ^ k . init where
init = hoistS (hoistT (spawn n))
step = advance . hoistS (mhStep . hoistT resample)

Example: different interpretations of the same model

```
model :: MonadBayes m => m Bool
model = do
b <- bernoulli 0.4
x <- if b then normal 0 1 else beta 1 1
observe x == 0.5
return b</pre>
```

```
model :: Weighted Sampler Bool
model = \rng ->
b = sample rng (bernoulli 0.4)
w = if b then normalPDF 0 1 0.5 else betaPDF 1 1 0.5
return (b,w)
```

```
model :: Enum Bool
```

```
model :: MonadBayes m => Seq (Pop m) Bool
model = do
b <- bernoulli 0.4
w = if b then normalPDF 0 1 0.5 else betaPDF 1 1 0.5
suspend
return [(b,w)]</pre>
```

Deterministic testing

```
    MH kernel preserves the posterior

            enumerate model == enumerate (model >>= kernel)

    SMC does not introduce bias

            enumerate model == enumerate (collapse (smc k n model))
```

model = [(True, 0.14), (False, 0.6)]

Future work

- more building blocks
- new inference algorithms
- implementation in other languages
- performance evaluation

ams240@cam.ac.uk

https://github.com/adscib/monad-bayes