Modular construction of Bayesian inference algorithms
Adam S/cibiorl'z, Zoubin Ghahramani®

University of Cambridge!, MPI Tibingen?

Outline Probability monads

Implementing inference algorithms is difficult A probability monad has the following interface:
» new algorithms often build on existing ones » create a Dirac distribution
» modularity in implementation helps with prototyping » apply the sum rule or the product rule
» we can achieve modularity with monad transformers » draw a random variable from a simple distribution
» easier to implement, easier to test » accumulate likelihood
» proof-of-concept library in Haskell This is sufficient to interpret any probabilistic program.

lllustration

Sequential

Population

> Population

interpretation inference Sampler sampling

Sampler

Building blocks

Layers (monad transformers) Inference transformations

Sampler pseudo-random sampler (no conditioning) sampleIO :: Samp a -> I0 a draw a sample
Weighted accumulates likelihood as a weight welghted :: Weigm a -> m (a,R) 1importance sample
Enumerator exhaustively enumerates discrete variables enumerate :: Enumm a -> m [(a,R)] enumerate discrete
Population maintains a population of weighted values spawn :: Int -> Popma -> Popma expand population
resample :: Pop m Pop m a simple resampling
collapse :: Pop m m a pick one value
Sequential suspendable models (e.g. time series) advance 1 Seq m Seq m a one step forward
finish ;: Seq m m a run to the end
Trace maintains the full execution trace mhstep c: Trm a Ir m a single mh step
marginal c: Trma ->ma discard trace
Conditional conditions on selected variables conditional :: [R] > Conm a -> m a conditional dist
density :: [R] > Conma ->mR pseudo-density
Prior discards all observations prior c: Prima ->ma prior distribution
Rejection rejects configurations with zero likelihood rejection :: ReJma ->ma rejection sampling

Composition of inference algorithms

smc :: Int -> Int -> Seq (Pop Samp) a —> Pop Samp a smcrm :: Int -> Int -> Seq (Tr (Pop Samp)) a -> Pop Samp a
smc k n = marginal . flatten . step =~ k . 1nit where smcrm k n = marginal . flatten . step ~ k . init where
init = hoistS (spawn n) init = hoistS (hoistT (spawn n))
step = advance . hoilsts resample step = advance . hoistS (mhStep . hoistT resample)

Example: different interpretations of the same model

model :: MonadBayes m => m Bool :: Weighted Sampler Bool
model = do = \rng —>
b <- bernoulli 0.4 sample rng (bernoulli 0.4)
X <- 1f b then normal O 1 else beta 1 1 if b then normalPDF O 1 0.5 else betaPDF 1 1 0.5
observe x == 0.5 return (b,w)
return b

model :: MonadBayes m => Seq (Pop m) Bool model :: Enum Bool
model = do model = [(True, 0.14), (False, 0.6)]
b <- bernoulli 0.4
w = 1f b then normalPDF O 1 0.5 else betaPDF 1 1 0.5
suspend
return [(b,w)]

Deterministic testing Future work

» MH kernel preserves the posterior » more building blocks
enumerate model == enumerate (model >>= kernel) » new inference algorithms

» SMC does not introduce bias » implementation in other languages
enumerate model == enumerate (collapse (smc k n model)) » performance evaluation

ams240Q@cam. ac.uk https://github.com/adscib/monad-bayes

