
Modular construction
of Bayesian inference algorithms

Adam Ścibior∗
Department of Engineering
University of Cambridge

United Kingdom
ams240@cam.ac.uk

Zoubin Ghahramani
Department of Engineering
University of Cambridge

United Kingdom
zoubin@eng.cam.ac.uk

Abstract

We propose a set of abstractions to modularize implementation of Bayesian in-
ference algorithms. We provide a proof-of-concept implementation as a Haskell
library and demonstrate on several examples how it simplifies implementation
of Monte Carlo algorithms. Our technique is based on a method for modular
construction of interpreters using monad transformers and is applicable generically
to probabilistic programming.

1 Introduction

Implementation of approximate Bayesian inference algorithms is a difficult task. Probabilistic
programming systems hide this difficulty from the user, but someone still needs to implement
backends for those systems. And since there will never be an algorithm that solves all inference
problems, this implementation will forever remain an ongoing effort.

In this paper we propose a set of abstractions that modularizes the implementation of inference
algorithms. By devising a collection of small building blocks that algorithms can be constructed from,
we reduce the effort required to implement new inference methods based on existing ones, both in
terms of the amount of code that needs to be written and in terms of how difficult it is to comprehend
and test such code.

Our framework is directly applicable to probabilistic programming in full generality. It is based on
a technique for building modular interpreters using monadic denotational semantics [Liang et al.,
1995], so it can be employed in a compiler for any probabilistic programming language. We provide
a proof-of-concept implementation as a Haskell library† where probabilistic programs can be written
using arbitrary Haskell code. In the future we plan to apply those techniques to implementation of
compilers for domain-specific probabilistic programming languages including imperative ones.

The rest of this paper offers a high-level explanation of the abstractions we propose, describes selected
building blocks, shows how to put them together to obtain interesting inference algorithms, and
concludes with a discussion of usability of our framework. We do not assume that the reader is
familiar with either Haskell or monads.

2 Probability monads

Monads are a popular tool in functional programming [Wadler, 1992] and semantics of programming
languages [Moggi, 1989] and have a reputation for being scary and incomprehensible. Here we do
∗also with MPI Tübingen
†https://github.com/adscib/monad-bayes

https://github.com/adscib/monad-bayes


not explain monads in detail, but rather describe the necessary minimum required to understand this
paper.

Our discussion is based on the concept of probabilistic programming, where probabilistic models are
identified with programs. We assume there exists a set of primitive distributions, such as Normal and
Bernoulli, that can be used to construct bigger models, and that for every primitive distribution we
can sample from it and compute its density.

We introduce a notion of a probability monad, which is a data type that can be used to interpret
arbitrary probabilistic programs, by which we mean constructing a concrete data structure from the
program code. In order to do that it needs to be able to represent distributions on any data types
available in the program and to perform the following operations:

• create Dirac distributions that place all the probability mass on one value
• construct a joint distribution on (X,Y ) from a marginal distribution of X and a conditional
Y given X

• perform marginalization over a subset of random variables
• draw random variables from primitive distributions
• accumulate a likelihood score given by explicit density

In theory there exists a monad of probability distributions [Giry, 1981], but in practice it is not
implementable. In this work we use two basic probability monads: one called Enumerator that
performs inference by enumerating the entire probability space [Erwig and Kollmansberger, 2006],
and one called Sampler performing random importance sampling from the prior.

We now discuss how more practical inference algorithms can be constructed by extending the simple
probability monads above. Although we focus our discussion on sampling methods, other approaches
such as Variational Inference, especially in its black-box form [Ranganath et al., 2014], could be
implemented in a similar fashion.

3 Building inference algorithms

In our framework inference algorithms are transformations between abstract representations of
probabilistic models. The workflow is to first interpret the program using a concrete probability
monad and then apply a sequence of transformations to it until we have a representation that is
convenient for answering questions about the posterior, such as a collection of samples. For this
reason we call transformations in this sequence inference transformations, even though individually
they may not constitute inference algorithms.

The initial representation is obtained by constructing a suitable monad stack and using it to interpret
the model. A monad stack consists of a bottom monad (in our case Enumerator or Sampler) and then
zero or more monad transformers layered on top of it. A monad transformer is simply a constructor
that takes one monad and creates another. Every monad stack is itself a monad, obtained by starting
at the bottom at then applying each monad transformer in turn. In our application every monad stack
is a probability monad, so it can be used to interpret probabilistic models. From this point on we refer
to monad stacks we use as inference stacks and to monad transformers as layers.

There are three distinct but related aspects of modularity displayed by our approach:

1. inference stack consists of independent layers that can be arranged in arbitrary combinations
2. inference transformations abstract over most of the stack, so they can be implemented once

and applied to any stack where a particular layer (or combination of layers) is present
3. since output of an inference transformation is itself an interpretation of some probabilistic

model in a certain stack, inference transformations can be chained together in arbitrary ways
as long as the output stack of each of them matches the input stack of the next

The last of these was previously exploited by Ścibior et al. [2015] and Zinkov and Shan [2016],
although each of these papers only allows transformations within a single data type.

We now present some concrete layers and associated inference transformations and show how they
can be used to produce interesting inference algorithms. We emphasize this is not an exhaustive

2



account of what can be achieved within our framework, but rather a small and interesting example
that demonstrates the utility of our approach. We focus on implementing algorithms already existing
in the literature, although different combinations of the building blocks we describe may result in
genuinely new algorithms.

3.1 Population

The first layer we introduce is called Population by similarity with Population Monte Carlo [Cappé
et al., 2004] and converts a distribution over a single value into a distributions over collections of
weighted values.

We show three inference transformations associated with Population. The first is increasing the
population size n times, which we call spawn n >>. This simply draws n independent collections and
merges them together. In order to keep the sum of the weights constant, we divide all weights by
n. The second is resample, which picks n new samples independently at random with probabilities
proportional to the weights in the old population and set the new weights uniform. Again we adjust
the weights at the end to make sure the sum of all weights stays the same.

Finally there exists a transformation that removes the Population layer called collapse. It first
computes the sum of all weights and records it in the stack below as artificial likelihood. It then
selects one sample at random, with probabilities proportional to weights, and retains just this sample
discarding the population. If the output stack consists of Sampler only, this operation produces a
properly weighted sample in the sense of described by Naesseth et al. [2014, Definition 1].

3.2 Sequential

The second layer can be applied to models that interleave drawing random variables with recording
observations, such as state-space models, and can be used to perform inference sequentially targeting
a partial posterior before extending the model with further random variables and data.

The principal inference transformation associated with Sequential is advance, which runs the model
to the next observation. Interleaving advance with other inference transformations lets us perform
inference sequentially. Once this is done, another transformation called flatten can be used to
remove the Sequential layer, running through all the remaining observations if there are any left.

The combination of Population and Sequential is sufficient to implement the Sequential Monte
Carlo algorithm. This is achieved simply by interleaving advance and resample transformations.
Specifically, let n be the number of particles and k be the number of observations in the model. The
code snippet below is the actual implementation of SMC from our library. In all the examples shown
in this paper the functions named hoistX can be regarded as having no effect other than satisfying
the type system.

smc :: Int -> Int -> Sequential (Population Sampler) a
-> Population Sampler a

smc k n = flatten .
repeat k (advance . hoistS resample) .
hoistS (spawn n >>)

The first part of the snippet above is a type signature, which asserts that smc is an inference transfor-
mation that takes two integer parameters and converts a stack consisting of Sequential Population
Sampler from the top to Population Sampler. The input stack is obtained automatically by inter-

preting a standard probabilistic program in a step transparent to the user. The second part is the
actual implementation, where . is ordinary function composition such that (f.g)(x)= f(g(x)) and
repeat k applies a given function k times. The code above corresponds to a variant of SMC for
generic probabilistic programs proposed by [Wood et al., 2014].

3.3 Trace

The final layer we present is called Trace and corresponds to a distribution on the traces of probabilis-
tic programs. A trace is a collection of all random variables sampled during the program’s execution
together with some auxiliary information related to the program’s structure.

3



A basic inference transformation associated with Trace is called mhStep and performs a single step of
the Lightweight Metropolis-Hastings algorithm proposed by Wingate et al. [2011]. We also have an
inference transformation called marginal which discards the trace and thus removes the Trace layer.

The mhStep transformation can easily be used by itself to perform MCMC inference, but it is more
interesting to see how it can be combined with different transformations to incorporate MH transitions
into other algorithms. Specifically, we show how to construct an implementation of resample-move
SMC [Gilks and Berzuini, 2001]. The idea is to incorporate MH transitions for each particle after the
resampling step to ameliorate the problem of degeneracy in SMC. We can achieve this by modifying
the smc implementation given above, specifically by adding Trace layer to the inference stack and
mhStep transformation after resample.

smcrm :: Int -> Int ->
Sequential (Trace (Population Sampler)) a ->
Population Sampler a

smcrm k n = marginal . flatten .
repeat k (advance . hoistS mhStep .

hoistS (hoistA resample)) .
(hoistS . hoistA) (spawn n >>)

We only include a single mhStep transition for brevity, but it would be trivial to use multiple transitions
at each step.

To finish this section we present an implementation of an algorithm called Particle Independent
Metropolis Hastings (PIMH) [Andrieu et al., 2010] which uses SMC as a proposal distribution
for MH. It relies on an inference transformation called mhPrior, which performs an MH step by
proposing new values for all random variables jointly from the prior. With that in place we can
implement a single step of PIMH in the following way.

pimh :: Int -> Int ->
Sequential (Population Sampler) a ->
Sampler a

pimh n k =
mhPrior . hoistS (collapse . smc n k)

4 Discussion

In this section we discuss some issues related to usability of our framework. Since our library is a
proof-of-concept system, we do not evaluate performance at this point.

First of all, we emphasize that Haskell is simply a convenient tool to express our ideas and is in
no way necessary to implement them - an equivalent library could be built for any general-purpose
programming language such as Python. Second, regarding monads, we believe that understanding
monads is in no way necessary to build inference algorithms by composing existing building blocks
as shown in the examples above. Understanding monads is only required to implement new layers
and inference transformations, but we believe that the benefits offerred by our framework make it
worthwhile for potential developers to invest time in learning the relevant concepts.

Apart from that, we would like to highlight how our modular architecture helps with testing random-
ized inference algorithms. Monte Carlo methods are difficult to test since they can produce arbitrarily
bad results with non-zero probability, which results in a trade-off between significance and power
of randomized tests [Radul, 2016]. However, in our framework we can replace the bottom Sampler
layer with Enumerator and run an inference algorithm on a small discrete models to check if it targets
exactly the correct posterior. Thus we can deterministically check that an MCMC kernel preserves
the correct posterior distribution or that a resampling scheme does not introduce any bias, which we
found invaluable in practice.

As a closing remark, we would like to express our hope that the framework presented in our paper,
whether in the implementation described here or a different one, will be useful to researchers
designing novel inference algorithms. We hope the modular style of implementation we advocate
will be particularly useful for quick initial exploration of the design space of inference algorithms.

4



References
C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal of the

Royal Statistical Society, 72:269–342, 2010. URL www.stats.ox.ac.uk/~doucet/andrieu_
doucet_holenstein_PMCMC.pdf.

O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert. Population Monte Carlo. Journal of Computa-
tional and Graphical Statistics, 13:907–929, 2004. URL http://amstat.tandfonline.com/
doi/abs/10.1198/106186004X12803.

M. Erwig and S. Kollmansberger. Probabilistic functional programming in haskell. Journal of
Functional Programming, 16:21–34, 2006. URL http://dl.acm.org/citation.cfm?id=
1114013.

W. Gilks and C. Berzuini. Following a moving target - Monte Carlo inference for dynamic Bayesian
models. Journal of the Royal Statistical Society, 63:127–146, 2001. URL www.mathcs.emory.
edu/~whalen/Papers/BNs/MonteCarlo-DBNs.pdf.

M. Giry. A categorical approach to probability theory. In Categorical aspects of Topology and Analysis.
Springer, 1981. URL http://link.springer.com/chapter/10.1007%2FBFb0092872.

S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In POPL, 1995.
URL http://dl.acm.org/citation.cfm?id=199528.

E. Moggi. Notions of computation and monads. In LiCS, 1989. URL http://www.sciencedirect.
com/science/article/pii/0890540191900524.

C. Naesseth, F. Lindsten, and T. Schön. Nested sequential Monte Carlo methods. In AISTATS, 2014.
URL http://www.jmlr.org/proceedings/papers/v33/ranganath14.html.

A. Radul. On testing probabilistic programs. http://alexey.radul.name/ideas/2016/
on-testing-probabilistic-programs/, 2016.

R. Ranganath, S. Gerrish, and D. Blei. Black-box variational inference. In AISTATS, 2014. URL
http://www.jmlr.org/proceedings/papers/v33/ranganath14.html.

A. Ścibior, Z. Ghahramani, and A. Gordon. Practical probabilistic programming with monads. In
Haskell, 2015. URL http://dl.acm.org/citation.cfm?id=2804317.

P. Wadler. The essence of functional programming. In POPL, 1992. URL http://dl.acm.org/
citation.cfm?id=143169.

D. Wingate, A. Stuhlmüller, and N. Goodman. Lightweight implementations of probabilistic pro-
gramming languages via transformational compilation. In AISTATS, 2011. URL https://web.
stanford.edu/~ngoodman/papers/lightweight-mcmc-aistats2011.pdf. The published
version contains a serious bug in the algorithm description, which was fixed in Revision 3 available
from the authors page.

F. Wood, J.-W. van de Meent, and V. Mansinghka. A new approach to probabilistic programming
inference. In AISTATS, 2014. URL http://www.robots.ox.ac.uk/~fwood/assets/pdf/
Wood-AISTATS-2014.pdf.

R. Zinkov and C. Shan. Composing inference algorithms as program transformations.
arXiv:1603.01882, 2016.

5

www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf
www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf
http://amstat.tandfonline.com/doi/abs/10.1198/106186004X12803
http://amstat.tandfonline.com/doi/abs/10.1198/106186004X12803
http://dl.acm.org/citation.cfm?id=1114013
http://dl.acm.org/citation.cfm?id=1114013
www.mathcs.emory.edu/~whalen/Papers/BNs/MonteCarlo-DBNs.pdf
www.mathcs.emory.edu/~whalen/Papers/BNs/MonteCarlo-DBNs.pdf
http://link.springer.com/chapter/10.1007%2FBFb0092872
http://dl.acm.org/citation.cfm?id=199528
http://www.sciencedirect.com/science/article/pii/0890540191900524
http://www.sciencedirect.com/science/article/pii/0890540191900524
http://www.jmlr.org/proceedings/papers/v33/ranganath14.html
http://alexey.radul.name/ideas/2016/on-testing-probabilistic-programs/
http://alexey.radul.name/ideas/2016/on-testing-probabilistic-programs/
http://www.jmlr.org/proceedings/papers/v33/ranganath14.html
http://dl.acm.org/citation.cfm?id=2804317
http://dl.acm.org/citation.cfm?id=143169
http://dl.acm.org/citation.cfm?id=143169
https://web.stanford.edu/~ngoodman/papers/lightweight-mcmc-aistats2011.pdf
https://web.stanford.edu/~ngoodman/papers/lightweight-mcmc-aistats2011.pdf
http://www.robots.ox.ac.uk/~fwood/assets/pdf/Wood-AISTATS-2014.pdf
http://www.robots.ox.ac.uk/~fwood/assets/pdf/Wood-AISTATS-2014.pdf

	Introduction
	Probability monads
	Building inference algorithms
	Population
	Sequential
	Trace

	Discussion

