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Abstract

Automatic variational inference has recently become feasible as a scalable inference
tool for probabilistic programming. The state-of-the-art algorithms are stochastic
in two respects: they use stochastic gradient descent to optimize an expectation
that is estimated with stochastic approximation. The core computation of such
algorithms involves evaluating the loss and its automatically differentiated gradient
for random parameters sampled from the approximation. We study ways of re-using
some of the gradient computations during optimization, to speed up learning for
large-scale applications. We present a stochastic average gradient algorithm that
uses gradients computed for past mini-batches to reduce noise, and explain how
importance sampling allows re-using gradients computed for data samples visited
again during the optimization loop.

1 Introduction

Variational approximation has long promised a scalable alternative to MCMC for approximate
posterior analysis, but the learning task that involves optimizing an expectation over high-dimensional
parameter space has required extensive model-specific derivations and often resorting to conjugate
priors. This has recently changed with the introduction of algorithms that use stochastic estimates of
the loss and its automatically differentiated gradients.

The learning goal in variational inference is provided by the evidence lower bound (ELBO)

L(x, λ) =

∫
q(θ|λ) log

p(x, θ)

q(θ|λ)
dθ, (1)

which is maximized over the parameters λ of the approximation q(θ|λ). The key finding enabling the
use of variational inference for generic models is that we can compute stochastic estimates of the
gradients of (1) using either the reparametrization method [2, 10, 12] or the log-derivative trick [8].
The former requires a differentiable probability model, whereas for the latter it is sufficient to use a
differentiable approximation. The reparametrization method generally results in considerably more
efficient algorithms. We build here on the reparametrization method, but note that the basic idea of
re-using gradient computations could be useful also for algorithms using the log-derivative trick.

The standard reparametrization algorithm uses gradients of the form

∇λL(x, λ) ≈ 1

M

M∑
m=1

∇θ log p(x, θm)∇λf(zm, λ), (2)

where θm are drawn from the approximating distribution q(θ|λ) using the reparametrization θm =
f(zm, λ) and zm are draws from some standard distribution that does not depend on λ. The notation
∇θ log p(x, θm) is a shorthand for the gradient w.r.t. θ evaluated at θm. The key observation is that
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the gradient w.r.t. the parameters λ of the approximation can be computed using the gradients w.r.t.
the parameters θ using the chain rule.

Most of the practical algorithms [2, 3, 12] use normal approximations, possibly combined with
transformations for the model parameters. This makes the reparametrization simple location-scale
transformation f(z, {µ,C}) = µ + Cz, where z are drawn from the standard normal distribution.
The main research focus in automatic variation inference has lately been in generalizations suitable
for other distributions: Maddison et al. [4] presented a differentiable reparametrization for categorical
variables, Ruiz et al. [9] provided approximative reparametrization by drawing samples from a
distribution that is almost independent of λ, and Naesseth et al. [6] provided even more flexible and
accurate technique based on rejection sampling.

The optimization problem itself is typically solved by straightforward stochastic gradient descent
(SGD). Practically all of the computation for such an algorithm goes into evaluating the expected
logarithmic probability for each data point in a mini-batch for samples θm drawn from the approxi-
mation, and for evaluating the gradient for each of those. In this work we consider alternatives to
SGD, and in particular look into ways of re-using already performed gradient computations during
the optimization loop to speed up the overall convergence. First we apply the concept of stochastic
average gradients (SAG) [11] for automatic variational inference. At the expense of some storage
space, SAG enables emulating full-batch gradients with the computational cost of stochastic gradients
by storing the gradients computed for each mini-batch and using their mean for updates.

We then consider techniques to re-use computations performed the last time a particular mini-batch
was seen. As shown in (2), the full gradient is obtained by combining two separate terms. The first
term, the gradient of the logarithmic probability with respect to the model parameters, does not
depend on the approximation and hence need not be computed again. However, it has been evaluated
at θm drawn from some old approximation. We present an importance sampling technique to correct
for that, resulting in speedup that skips the most time-consuming part of the gradient estimate at the
expense of higher variance.

2 Background: Automatic variational inference

Here we briefly recap the standard procedure for gradient-based learning of variational approximations
for arbitrary differentiable probability models, following roughly the presentation by Titsias and
Lázaro-Gredilla [12] and Kucukelbir et al. [3]. Given a model p(x, θ) defined over some parameters
θ, the goal is to learn an approximation q(θ|λ) for the posterior distribution p(θ|x) by optimizing
a lower bound (1) for the marginal likelihood p(x). This requires both specifying the family of the
approximation q(θ|λ) and finding the optimal parameters λ.

A practical choice for approximating arbitrary differentiable models is to posit a normal distribution
q(θ̂|λ) = N(θ̂|µ,CCT ) over parameters θ̂ transformed to lie in the full real line, proposed by
Kucukelbir et al. [3] as a general procedure. This choice combines easy reparametrization with
flexibility of modeling also constrained parameters. For the following presentation we do not
explicitly present the transformations, but present the inference algorithm for the special case that
approximates the posterior over the parameters θ directly with a normal distribution. This corresponds
to the Gaussian variational approximation [7, 12] and can be extended to the transformed case.

The reparametrization for the Gaussian approximation is done by writing θ = Cz + µ, where C is
a cholesky factor, and using q(θ|λ) = 1

|C|φ(C−1(θ − µ)) as the approximation, where φ(·) is the
standard normal distribution. Given this choice, a change of variables simplifies the ELBO into

L(x, µ,C) =

∫
φ(z) log

p(x,Cz + µ)|C|
φ(z)

δz

where the integral is over the standard normal distribution that does not depend on λ. Consequently,
it can be replaced by a stochastic approximation

L(x, µ,C) ≈ 1

M

M∑
m=1

log p(x,Czm + µ) + log |C|+Hφ

where zm are drawn from N(0, I). We can now easily compute the gradients using automatic
differentiation of the model and the chain rule, by first differentiating log p(x,Cz + µ) with respect
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to θ and then θ = Cz + µ w.r.t. µ and C, resulting in

∇µL(x, µ,C) ≈ 1

M

M∑
m=1

∇θ log p(x, θm) (3)

∇CL(x, µ,C) ≈ 1

M

M∑
m=1

∇θ log p(x, θm)× (θ − µ)TC−T + ∆C ,

where ∆C is the derivative of log |C|. Here C can either be a diagonal matrix to correspond to a
mean-field approximation or cholesky factor of an arbitrary covariance matrix over the parameters.

3 Stochastic Average Gradients

We extend the idea of stochastic average gradients (SAG) [11] to automatic variational inference, by
replacing the stochastic gradient with the stochastic average gradient computed by combining the most
recent mini-batch with gradients computed for earlier mini-batches: ∇L(X,λ) ≈

∑B
b=1∇L(Xb, λ),

where Xb denotes the samples in the bth mini-batch. SAG is straightforward to implement, requiring
only storage of the previously computed gradients, and provides an intermediate technique between
full-batch gradients and pure stochastic gradients. The theoretical guarantees of SAG providing
efficient convergence for losses consisting of finite sums are not directly applicable because of the
stochastic estimates, but the motivation of reducing the gradient noise still applies.

We implement SAG by multiplying the gradients for all but the latest mini-batch Xb by α ∈ [0, 1]
before each gradient step, and let α grow from 0 to 1 during the optimization using (1− 0.90.5t/B),
where t is the current iteration and B is the number of mini-batches. During the early phases the
approximation is changing rapidly and hence we want to give less weight for old mini-batches with
potentially stale gradients, but eventually we like to take steps along the full batch gradient.

We are not the first ones to consider algorithms motivated by SAG for variational inference, but the
earlier approaches have been provided for conjugate models and they operated on top of sufficient
statistics instead of gradients. Mandt and Blei [5] extended stochastic variational inference by
SAG-like elements, and Archambeau and Ermis [1] proposed an incremental variational inference
algorithm and its gradient-based variant that average sufficient statistics over mini-batches similar to
how SAG averages gradients.

4 Importance sampling for re-using gradients

SAG as described above helps in reducing the gradient noise by combining the current mini-batch
gradient with gradients of other mini-batches. It has effectively the same computational cost as
standard SGD, since computing the gradient typically clearly dominates the total computation
compared to the memory management required for SAG.

An interesting question is whether we can do better. When re-visiting a mini-batch that has already
been processed, we have computed the gradient w.r.t. θ and evaluated it for some set of θm drawn from
q(θ|λ0), where λ0 refers to the parameters of the approximation when the gradient was computed.
Re-using that information offers an intriguing opportunity, and it can be done via importance sampling.
Importance sampling is traditionally used for estimating expectations when we cannot easily draw
samples from the density of interest; here we could draw samples from the new approximation but
want to avoid computation and hence choose not to.

To estimate the expectation over q(θ|λ) using θm ∼ q(θ|λ0) we use the estimate

Eq(θ|λ)[∇λL(x, λ)] ≈ 1

M

M∑
m=1

q(θm|λ)

q(θm|λ0)
∇θm log p(x, θm)∇λf(zm, λ).

Here zm refers (with a slight abuse of notation) to a draw from the standard distribution that would
have been required to create θm under the new approximation. The term ∇θm log p(x, θm) has
already been computed, and hence to estimate the full gradient we only need to compute the weight
q(θm|λ)
q(θm|λ0)

and the latter term of the gradient. For normal approximation we merely need to find
zm = C−1(θm − µ) and compute the gradients as in (3).
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Figure 1: Left: Re-using gradients speeds up learning. Switching from SGD to SAG improves
convergence speed as does re-using previous gradients with importance sampling, and combining
both results in a total speed-up of almost an order of magnitude. Here, I-SAG and I-SGD use
normalized weights computed for each element of the gradient separately. Right: The distribution of
the convergence times over 200 random initializations for the different importance sampling variants.
I-SAG outperforms SGD with any of the weighting schemes, but the naive version using a single set
of weights without normalization is not as efficient as the other variants.

Importance sampling has high variance if q(θ|λ0) and q(θ|λ) are very different. We propose three
remedies to overcome this: (1) We use the importance sampled estimate only with probability ρ,
and otherwise we reset the process by re-sampling θm and computing the gradient from scratch for
that mini-batch, (2) We normalize the weights wm to sum up to one, following the self-normalized
importance sampling procedure typically used with unnormalized densities, and (3) We estimate each
of the elements of the gradient independently using separate set of weights, instead of using the same
weights for the whole gradient. The last trick allows using importance sampling in one-dimensional
space instead of a high-dimensional one.

We call the algorithm I-SAG for importance-sampled SAG, and note that importance-sampled SGD
can be implemented in a similar fashion by keeping α = 0 throughout the optimization. We
demonstrate I-SAG on isotropic Gaussian mixture model of the MNIST digits, using mean-field
normal approximation for parameters transformed to unconstrained real values and ADAM for
controlling the learning rate. Figure 1 shows that I-SAG outperforms SGD by a wide margin, and
that re-using gradients help for both SAG and SGD. We also compared alternative approaches for
importance sampling, observing that here element-wise normalized weights worked the best.

5 Discussion

We presented steps towards avoiding unnecessary computation during automatic variational inference,
showing the derivations for the special case of normal approximations directly parametrized by µ
and C. For such an approximation we can re-use previously computed gradients with importance
sampling and a trivial transformation of ∇λ log p(x, λ). We showed that the proposed algorithm
clearly outperforms standard SGD, and experimented with different strategies for controlling the
variance of the importance sampling step. Further work is needed to find settings that would be robust
for a wide class of models.

Models like variational autoencoder [2] use Gaussian approximation but parametrize the mean and
covariance of the approximation with non-linear mappings from the observed data. For such models
the full gradient consists of two computationally demanding parts, one for the decoder and one for
the encoder. The first term can be re-used in our importance sampling algorithm, but the latter needs
to be re-computed, which means the computational saving is smaller. The practical value of the idea
for such models remains to be evaluated empirically as future work.
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