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Abstract

Compared to the REINFORCE gradient estimator, the reparameterization trick
usually gives lower-variance estimators. We propose a simple variant of the
standard reparameterized gradient estimator for the evidence lower bound that
has even lower variance under certain circumstances. Specifically, we decompose
the derivative with respect to the variational parameters into two parts: a path
derivative and the score function. Removing the second term produces an unbiased
gradient estimator whose variance approaches zero as the approximate posterior
approaches the exact posterior. We propose that the removed term has arbitrarily
high variance when the variational posterior has a complex form, as when using
adaptive posteriors such as given by normalizing flows or stochastic Hamiltonian
inference.

1 Estimators of the Evidence Lower Bound

Variational inference posits a family of distributions Q and attempts to find an approximate posterior
qφ by optimizing the evidence lower bound (ELBO):

L(φ) = Ez∼q[log p(x, z)− log qφ(z |x)] (ELBO)

An unbiased approximation of the gradient of the ELBO allows stochastic gradient descent to scalably
learn complex models.

When the joint distribution p(x, z) can be evaluated by p(x|z) and p(z) separately, the ELBO can be
written in the following three forms:

L(φ) = Ez∼q[log p(x|z) + log p(z)− log qφ(z|x)] (1)
= Ez∼q[log p(x|z) + log p(z))] +H[qφ] (2)
= Ez∼q[log p(x|z)]−KL(qφ(z|x)||p(z)) (3)

By sampling z ∼ q(z), equations (1), (2), and (3) can be used to construct Monte-Carlo estimates
of the ELBO. When p(z) and q(z|x) are multivariate Gaussians, using (3) is appealing because it
analytically integrates out terms that would otherwise have to be estimated by Monte Carlo. Intuitively,
we might that using exact integrals wherever possible will give lower-variance estimators.

Surprisingly, though, there are circumstances under which (1), which we call the full Monte Carlo
estimator of the ELBO, has lower variance than the estimator based on (3) which calculates the
KL divergence exactly. Specifically, when q(z|x) = p(z|x), i.e. the variational approximation is
exact, then the variance of the full Monte Carlo estimator is exactly zero, since its value is a constant



independent of z:

L̂MC(φ) = log p(x|zi) + log p(zi)− log qφ(zi|x) zi
iid∼ q(z) (4)

= log p(x|zi) + log pθ(zi)− log qφ(zi|x) (5)
= log p(x, zi)− log qφ(zi|x) (6)
= log p(zi|x) + log p(x)− log p(zi|x) (using q(z|x) = p(z|x) ) (7)
= log p(x) (8)

This result suggests that using (1) should be preferred when we believe that q(z|x) u p(z|x).

2 Estimators of the Gradient

What about estimating the gradient of the evidence lower bound? In this section, we show that
the variance of the gradient of the fully Monte Carlo estimator (1) with respect to the variational
parameters is not zero, even when q(z|x) = p(z|x), and when using the reparameterization trick.

Using the reparameterization trick [3], we can say that a sample z is a deterministic function of a
random variable, ε, with a fixed distribution. This can be written as zφ = f(ε, φ). Then, gradient of
the estimator based on (1) with respect to the variational parameters φ has the form:

∇̂MC = ∇φ [log p(x|zφ) + log p(zφ)− log qφ(zφ|x)] ε
iid∼ N (0, I) (9)

=
∂ log p(x|zφ)

∂φ
+
∂ log p(zφ)

∂φ
− ∂ log qφ(zφ|x)

∂φ
(10)

=
∂ log p(zφ|x)

∂zφ

∂zφ
∂φ
− ∂ log q(zφ|x)

∂zφ

∂zφ
∂φ︸ ︷︷ ︸

path derivative

− ∂ log qφ(z|x)
∂φ︸ ︷︷ ︸

score function

(11)

The gradient estimate can be broken into two parts. The path derivative measures dependence on φ
only through the sample zφ = f(ε, φ). The score function measures the depends on log qφ directly,
without considering how the sample z changes as a function of φ.

When q(z|x) = p(z|x) for all z, the path derivative is identically zero for all z. However, the score
function is not necessarily zero for any z, meaning that the above gradient estimator (9) will have
non-zero variance even when the q matches the exact posterior everywhere.

3 A Path-Derivative of the ELBO Gradient

Could we get rid of the score function term from the gradient estimate? For stochastic gradient
descent to converge, we require that our gradient estimate is unbiased. By construction, the gradient
estimate given by (9) is unbiased. Luckily, the score function has zero expectation, meaning that if
we simply remove that term, we still have an unbiased gradient estimator:

∇̂PD =
∂ log p(zφ|x)

∂zφ

∂zφ
∂φ
− ∂ log q(zφ|x)

∂zφ

∂zφ
∂φ

(12)

This estimator, which we call the path-derivative gradient estimator, is simply the standard gradient
estimate with the score function term removed, which has the desirable property that as q(z|x)
approaches p(z|x), the variance of this estimator goes to zero. Figure 1 shows the impact that this
has on optimization when the variational family contains the true posterior, in a toy example.

4 Practical Implications

When should we prefer the path derivative gradient estimator? Its variance near the optimum depends
on the variance of the score function (also known as the Fisher information) of q. We conjecture that
complex q distributions, such as those specified by adaptive inference schemes such as normalizing
flows [6] or Hamiltonian variational inference [9], will have high Fisher information, increasing as
the approximate posterior becomes more detailed. Notably, in these cases the exact entropy and KL

2



50 100 150 200 250

Iteration
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

‖φ
−
φ
?
‖ 2

Path Derivative Gradient Estimator
Fully Monte Carlo Gradient Estimator

Figure 1: Optimization of variational parameters using the standard gradient estimate versus new
gradient estimator. In this toy example, the true posterior and the variational family were both
isotropic 2D Gaussians. However, without decaying the optimization step-size, the naïve estimator
bounces around the true optimum, while the path-derivative estimator converges quickly and stays at
the optimum.

are intractable, so the estimators given by (2) and (3) cannot be used. Relying on stochastic estimates
of the KL or exact entropy brings us back into the Fully Monte Carlo gradient paradigm, which our
proposed gradient estimator improves.

The variance of the path derivative gradient estimator can be higher in some cases where the variational
approximation is far from the true parameters if the control variate is negatively correlated with the
path derivative. This has the potential to slow down learning, because removing the score function
gradient will increase the variance of the stochastic estimates. To address this problem, we can
estimate an adataptive optimal scaling constant c∗ as the ratio of the covariance of the two gradient
components divided by the variance of the score function [7]. When the variational approximation
is exact, we have shown that c∗ = 1 is optimal. When the variational approximation is not exact,
an estimate of c∗ based on the current minibatch will change sign and magnitude depending on the
positive or negative correlation of the score function with the path derivative. Minibatch estimation
of the optimal scale was introduced used by [5] to reduce the high variance of REINFORCE-style
gradient estimates.

5 Related Work

Our modification of the standard reparameterized gradient estimate can also be viewed as adding a
control variate, and in fact [5] investigated the use of the score function as a control variate in the
context of non-reparameterized variational inference.

The variance-reduction effect we use to motivate our general gradient estimator has been noted
in the special cases of Gaussian distributions with sparse precision matrices and Gaussian copula
inference in [10] and [2] respectively. In particular, [10] observes that by eliminating certain terms
from a gradient estimator for Gaussian families parametrized by sparse precision matrices, two lower-
variance unbiased gradient estimators may be derived. Our work is a generalization to any variational
family by analyzing the cause of the variance reduction which provides a framework for easily
implementing the technique in existing software packages that provide automatic differentiation. This
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can save time in implementation by eliminating the need for detailed analyses of the functional form
of the variational posterior in special cases.

An innovation by Ruiz et al. [8] introduces the generalized reparameterization gradient (GRG)
which unifies the REINFORCE-style and reparameterization gradients. This technique uses a
reparameterization that allows at most weak dependence on the latent variables, meaning that at least
the first moment has no dependence on the latent variables. Their estimator improves on the variance
of the score-function gradient estimator in BBVI without the use of Rao-Blackwellization, although a
term in their estimator behaves like a control variate. The present study, by contrast, shows a simple
control variate for the naive reparameterization gradient that can be easily implemented to improve
existing algorithms.

6 Experiments
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(a) The variance of different ELBO estimators as a
function of KL divergence from the true posterior. The
variance of the fully Monte Carlo estimator goes to
zero as the divergence goes to zero.
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(b) The nuclear norm of the covariance matrix of dif-
ferent ELBO gradient estimators, as a function of KL
divergence from the true posterior. The variance of
the fully Monte Carlo gradient estimator does not go
to zero as the divergence goes to zero, but the variance
of the path derivative estimator does.

Figure 2: Variance of ELBO and ELBO gradient estimates on a toy Gaussian example.

We include an empirical analysis of the different ELBO and ELBO gradient estimators in Figure 2.
In this experiment, the path derivative gradient estimator dominates the fully Monte Carlo estimator,
but presumably has higher variance than the exact KL estimator when the approximate posterior is
far from the exact posterior.

7 Future Work

We plan to examine the performance of our new gradient estimator on representative problems, and
examine the empirical Fisher information of complex approximating distributions. We also plan to
examine the properties of the path derivative gradient estimator in the multi-sample setting, relating it
to both importance-weighted autoencoders (IWAE) [1], and the variational inference for Monte Carlo
objectives (VIMCO) [4] gradient estimator.
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