On the Pitfalls of Nested Monte Carlo

Tom Rainforth, Rob Cornish, Hongseok Yang, and Frank Wood {twgr,rcornish,fwood}@robots.ox.ac.uk, hongseok.yang@cs.ox.ac.uk

Overview

- ► Classical convergence proofs are insufficient for Nested Monte Carlo
- Despite this, nested inference is still used naïvely in a number of settings e.g. probabilistic programming, experimental design, reinforcement learning
- ► We prove convergence, derive a convergence rate and provide empirical data that suggests it is observed in practise
- ► We prove that nested inference schemes are inherently biased
- ► Our results warn of the dangers of naïve nesting of inference schemes

Take Home

- ► Convergence is possible but requires additional assumptions to standard MC
- ▶ Number of samples used in **each** call of the inner estimator must increase with number used in the outer
- ► Convergence rate is very slow square of the number of samples of MC

Problem Formulation

Standard Monte Carlo:

$$I = \mathbb{E}_{y \sim p(y)} \left[\lambda(y) \right] \tag{1}$$

$$pprox rac{1}{N} \sum_{n=1}^{N} \lambda(y_n)$$
 where $y_n \sim p(y)$. (2)

We consider the case where λ is itself intractable:

$$\lambda(y) = f(y, \gamma(y))$$
 where $\gamma(y) = \mathbb{E}_{z \sim p(z|y)} \left[\phi(y, z) \right]$. (3)

We formally define nested Monte Carlo (NMC) as:

$$I pprox I_{N,M} = rac{1}{N} \sum_{n=1}^{N} f(y_n, (\hat{\gamma}_M)_n)$$
 where $y_n \sim p(y)$ and (4a)

$$(\hat{\gamma}_M)_n = \frac{1}{M} \sum_{m=1}^M \phi(y_n, z_{n,m})$$
 where $z_{n,m} \sim p(z|y_n)$. (4b)

Reformulating to a Single Expectation

If f is linear in its $2^{\rm nd}$ argument: $f(y,\alpha v+\beta w)=\alpha f(y,v)+\beta f(y,w)$, we can rearrange the problem to a single expectation

$$I = \mathbb{E}_{y \sim p(y)} \left[f\left(y, \mathbb{E}_{z \sim p(z|y)} \left[\phi(y, z)\right]\right) \right]$$

$$= \mathbb{E}_{y \sim p(y)} \left[\mathbb{E}_{z \sim p(z|y)} \left[f(y, \phi(y, z)) \right] \right]$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} f(y_n, \phi(y_n, z_n)) \quad \text{where} \quad (y_n, z_n) \sim p(y) p(z|y).$$

⇒ MC convergence rate for pseudo-marginal methods, PMCMC, ABC, etc

Motivating Examples

► Bayesian experimental design:

(defn outer-E [x M N]

(-> (doquery :smc

$$IG(x) = \mathbb{E}_{(y,z') \sim p(y,z'|x)} \left[\log p\left(y|z',x\right) - \log \mathbb{E}_{z \sim p(z|x)} \left[p\left(y|z,x\right) \right] \right]$$

► Nested queries in a probabilistic programming system

log-marginal))

(observe (setup-exp z(x)(y))

References

- [1] A.-M. Lyne, M. Girolami, Y. Atchade, H. Strathmann, D. Simpson, et al. On Russian roulette estimates for Bayesian inference with doubly-intractable likelihoods. *Statistical science*, 30(4):443–467, 2015.
- [2] I. Murray, Z. Ghahramani, and D. J. MacKay. MCMC for doubly-intractable distributions. In *Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence*, pages 359–366. AUAI Press, 2006.
- [3] F. Wood, J.-W. van de Meent, and V. Mansinghka. A new approach to probabilistic programming inference. In *AISTATS*, pages 1024–1032, 2014.

Acknowledgements

► BP, DARPA PPAML, NVIDIA

Almost Sure Convergence

Theorem 1. Under mild assumptions on f, there exists a $\tau: \mathbb{N} \to \mathbb{N}$ such that $I_{\tau(M),M} \overset{a.s.}{\to} I$ as $M \to \infty$.

Proof. Choose M large enough that $|I - \mathbb{E}\left[f(y_n, (\hat{\gamma}_M)_n)]| < \varepsilon$. For a fixed M, we have standard MC estimation on an expanded space y, z_1, \ldots, z_M , so we can choose $N = \tau(M)$ such that $\left|I_{\tau(M),M} - \mathbb{E}\left[f(y_n, (\hat{\gamma}_M)_n)]\right| < \frac{1}{M}$. We can thus make the total error arbitrary small almost surely as $M \to \infty$.

Convergence Rate

Theorem 2. If f is Lipschitz continuous, the mean squared error of $I_{N,M}$ converges at rate O(1/N+1/M).

Proof. By Minkowski $||I - I_{N,M}||_2^2 \le U^2 + V^2 + 2UV \le 2(U^2 + V^2)$ where

(3)
$$U = \left\| I - \frac{1}{N} \sum_{n=1}^{N} f(y_n, \gamma(y_n)) \right\|_2 \quad V = \left\| \frac{1}{N} \sum_{n=1}^{N} f(y_n, \gamma(y_n)) - f(y_n, \gamma(y_n)) \right\|_2$$

 $U = O\left(1/\sqrt{N}\right)$, and using the assumption that f is Lipschitz continuous

$$V \leq \frac{1}{N} \sum_{n=1}^{N} \|f(y_n, (\hat{\gamma}_M)_n) - f(y_n, \gamma(y_n))\|_2 \leq \frac{1}{N} \sum_{n=1}^{N} K \|(\hat{\gamma}_M)_n - \gamma(y_n)\|_2$$

where K is a fixed constant and $\|(\hat{\gamma}_M)_n - \gamma(y_n)\|_2 = O\left(1/\sqrt{M}\right)$.

Emprical Results - Seem to Observe Rate in Practice

The Inherent Bias of Nested Inference

Theorem 3. There does not exist a pair $(\mathcal{I}, \mathcal{J})$ such that

- 1. the inner estimator \mathcal{I} provides estimates $\hat{\gamma}_y \in \Phi$ at a given $y \in \mathcal{Y}$;
- 2. the outer estimator \mathcal{J} maps a set of samples $\hat{\zeta} = \{(y_1, \hat{\gamma}_{y_1}), \dots, (y_n, \hat{\gamma}_{y_n})\}$, to an unbiased estimate $\psi(\hat{\zeta}, f)$ of I(f), i.e. $\mathbb{E}[\psi(\hat{\zeta}, f)] = I(f)$;
- 3. $(\mathbb{E}_{y \sim p(y)}[\mathbb{E}[f(y, \hat{\gamma}_y)|y]] \mathbb{E}[\psi(\hat{\zeta}, f)]) \geq 0$ for all integrable f.

This result remains when ≥ 0 in the third condition is replaced by ≤ 0 .

Proof. Construct a pair f_1 and f_2 where the above cannot hold for both. For example, $f_1(y,w)=(\gamma(y)-w)^2$ and $f_2(y,w)=-f_1(y,w)$ lead to

$$\mathbb{E}_{y \sim p(y)} \left[\mathbb{E} \left[f_1(y, \hat{\gamma}_y) | y \right] \right] > 0 > \mathbb{E}_{y \sim p(y)} \left[\mathbb{E} \left[f_2(y, \hat{\gamma}_y) | y \right] \right].$$

