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» Classical convergence proofs are insufficient for Nested Monte Carlo

» Despite this, nested inference is still used naively in a number of settings -
e.g. probabilistic programming, experimental design, reinforcement learning

» \We prove convergence, derive a convergence rate and provide empirical data
that suggests it is observed in practise

» \We prove that nested inference schemes are inherently biased

» Our results warn of the dangers of naive nesting of inference schemes

» Convergence is possible but requires additional assumptions to standard MC

> Number of samples used in each call of the inner estimator must increase
with number used in the outer

» Convergence rate is very slow - square of the number of samples of MC

Problem Formulation

Standard Monte Carlo:

i = L ~p(y )P‘(y)] (1)
| N
~ Z (yn) where 1y, ~ p(y). (2)
—1
We consider the case where )\ s itself intractable:
AMy) = f(y,7(y)) where ~(y) = E. oy [0, 2)]. (3)
We formally define nested Monte Carlo (NMC) as:
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If f is linear in its 2"Y argument: f(y, av + Sw) = af(y,v) + Bf(y, w), we
can rearrange the problem to a single expectation
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= MC convergence rate for pseudo-marginal methods, PMCMC, ABC, etc
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Motivating Examples

» Bayesian experimental design:

~

L plz|z) P (Y2, x)ﬂ

» Nested queries in a probabilistic programming system

IG(:C) — <1:(y,z’)rvp(y,z’\x) [logp (y‘zla CE‘) o 1Og

(defn outer-E [z M N] (defquery outer—-query [x M]
(—> (doquery :smc (let [z’ (sample param-prior)
outer—query [x M]) experiment (setup—-exp 2 x)
(take N) Yy (sample experiment)
log-marginal) ) log-1lik (observe* experiment y)
log-marg (inner-E x y M) ]
(— loglik logmarg)))

(defn inner-E [x y M]
(—> (doquery :smc
inner—query [z Y]) (defquery inner—-query [z VY]

(take M) (let [z (sample param-prior) ]

log—-marginal)) (observe (setup-exp z x) vy)))
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Almost Sure Convergence

Theorem 1. Under mild assumptions on f, there exists a T : N — N such that

Loy, m BT as M — oo

Proof. Choose M large enough that |I — E|f(y., (Ym)n)|| < €. For a fixed M,
we have standard MC estimation on an expanded space v, 21, . . ZM, SO we
can choose N = 7(M) such that |I ()00 — E [f (yn, @M)n)H < 7. We can
thus make the total error arbitrary small almost surely as M — oo

Convergence Rate

Theorem 2./f f is Lipschitz continuous, the mean squared error of Iy
converges at rate O (1/N +1/M).

Proof. By Minkowski ||I — IN,MH§ <U*+ V420V < 2(U? + V?) where
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U=0 (1/\/N> and using the assumption that f is Lipschitz continuous
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where K is a fixed constant and ||(9a7)»
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Emprical Results - Seem to Observe Rate in Practice
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The Inherent Bias of Nested Inference

Theorem 3. There does not exist a pair (L, J) such that
1. the inner estimator L provides estimates v, € ¢ at a given y € )V,

2. the outer estimator f maps a set of samples C {(y1, Yau)s -« s (Yns Vo) }

to an unbiased estimate w(C f) of I(f), i.e. [¢(C )] = (f)

3. ( ijp(y)[ LS (Y, ) lyl] — AW(C, f)1) = 0 for all integrable f.
This result remains when > (0 in the third condition is replaced by < 0.

Proof. Construct a pair f; and f; where the above cannot hold for both. For

example, fi(y,w) = (v(y) —w)” and fo(y, w) = — fi(y, w) lead to
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