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Abstract

There is an increasing interest in estimating expectations outside of the classical
inference framework, such as for models expressed as probabilistic programs.
Many of these contexts call for some form of nested inference to be applied. In
this paper, we analyse the behaviour of nested Monte Carlo (NMC) schemes, for
which classical convergence proofs are insufficient. We give conditions under
which NMC will converge, establish a rate of convergence, and provide empirical
data that suggests that this rate is observable in practice. Finally, we prove that
general-purpose nested inference schemes are inherently biased. Our results serve
to warn of the dangers associated with naı̈ve composition of inference and models.

1 Introduction

Monte Carlo (MC) methods have become a ubiquitous means of carrying out approximate Bayesian
inference. From simplistic Metropolis Hastings approaches to state-of-the-art algorithms such as the
bouncy particle sampler [4] and interacting particle Markov chain MC [18], the aim of these methods
is always the same: to generate approximate samples from a posterior, from which an expectation
can be calculated. Although interesting alternatives have recently been suggested [5], MC integration
is used almost exclusively for calculating these expectations from the produced samples.

The convergence of conventional MC integration has been covered extensively in previous literature
[8, 10], but the theoretical implications arising from the nesting of MC schemes, where terms in
the integrand depend on the result of a separate, nested, MC integration, have been predominantly
overlooked. This paper examines convergence of such nested Monte Carlo (NMC) methods. Although
we demonstrate that the construction of consistent NMC algorithms is possible, we reveal a number
of associated pitfalls. In particular, NMC estimators are inherently biased, may require additional
assumptions for convergence, and have significantly diminished convergence rates.

A significant motivating application for NMC occurs in the context of probabilistic programming
systems (PPS) [9, 13, 15–17, 19], which allow a decoupling of model specification, in the form of
a generative model with conditioning primitives, and inference, in the form of a back-end engine
capable of operating on arbitrary programs. Many PPS allow for arbitrary nesting of programs so that
it is easy to define and run nested inference problems, which has already begun to be exploited in
application specific work [14]. However, such nesting can violate assumptions made in asserting the
correctness of the underlying inference schemes. Our work highlights this issue and gives theoretical
insight into the behaviour of such systems. This serves as a warning against naı̈ve composition and a
guide as to when we can expect to make reasonable estimations.

Some nested inference problems can be tackled by so-called pseudo-marginal methods [1, 2, 7, 11].
These consider cases of Bayesian inference where the likelihood is intractable, such as when it
originates from an Approximate Bayesian Computation (ABC) [3, 6]. They proceed by reformulating
the problem in an extended space [18], with auxiliary variables representing the stochasticity in the
likelihood computation, allowing the problem to be expressed as a single expectation.
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Our work goes beyond this by considering cases in which a non-linear mapping is applied to the
output of the inner expectation, so that this reformulation to a single expectation is no longer possible.
One scenario where this occurs is the expected information gain used in Bayesian experimental
design. This requires the calculation of an entropy of a marginal distribution, and therefore includes
the expectation of the logarithm of an expectation. Presuming these expectations cannot be calculated
exactly, one must therefore resort to some sort of approximate nested inference scheme.

2 Problem Formulation

The idea of MC is that the expectation of an arbitrary function λ : Y → F ⊆ RDf under a probability
distribution p(y) for its input y ∈ Y can be approximately calculated in the following fashion:

I = Ey∼p(y) [λ(y)] (1)

≈ 1

N

N∑
n=1

λ(yn) where yn ∼ p(y). (2)

In this paper, we consider the case where λ is itself intractable, defined only in terms of a functional
mapping of an expectation. Specifically,

λ(y) = f(y, γ(y)) (3)

where we can evaluate f : Y × Φ→ F exactly for a given y and γ(y), but where γ(y) is the output
of an intractable expectation of another variable z ∈ Z , that is,

either γ(y) = Ez∼p(z|y) [φ(y, z)] (4a)

or γ(y) = Ez∼p(z) [φ(y, z)] (4b)

depending on the problem, with φ : Y × Z → Φ ⊆ RDφ . All our results apply to both cases, but we
will focus on the former for clarity. Estimating I requires a nested integration. We refer to tackling
both required integrations using Monte Carlo as nested Monte Carlo:

I ≈ IN,M =
1

N

N∑
n=1

f(yn, (γ̂M )n) where yn ∼ p(y) and (5a)

(γ̂M )n =
1

M

M∑
m=1

φ(yn, zn,m) where zn,m ∼ p(z|yn). (5b)

The rest of this paper proceeds as follows. In Section 3, we consider a special case of f that allows us
to recover the standard Monte Carlo convergence rate. In Section 4, we establish convergence results
for IN,M given a general class of f . In Section 5, we show that any general-purpose NMC scheme
must be biased. Finally, in Section 6, we present empirical results suggesting that our theoretical
convergence rates are observed in practise.

3 Reformulation to a Single Expectation

Suppose that f is integrable and linear in its second argument, i.e. f(y, αv + βw) = αf(y, v) +
βf(y, w) (or equivalently f(y, z) = g(y)z for some g(y)). In this case, we can rearrange the problem
to a single expectation:

I = Ey∼p(y) [f(y, γ(y))] = Ey∼p(y)
[
f
(
y,Ez∼p(z|y) [φ(y, z)]

)]
= Ey∼p(y)

[
Ez∼p(z|y) [f(y, φ(y, z))]

]
≈ 1

N

N∑
n=1

f(yn, φ(yn, zn)) where (yn, zn) ∼ p(y)p(z|y).

This will give the MC convergence rate ofO(1/N) in the mean square error of the estimator, provided
we can generate the required samples. Many models do permit this rearrangement, such as those
considered by pseudo-marginal methods. Note that if γ(y) is of the form of (4b) instead of (4a), then
y and z are drawn independently from their marginal distributions instead of the joint.
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4 Convergence of Nested Monte Carlo

Since we cannot always unravel our problem as in the previous section, we must resort to NMC in
order to compute I in general. Our aim here is to show that approximating I ≈ IN,M is in principle
possible, at least when f is well-behaved. In particular, we prove a form of almost sure convergence
of IN,M to I and establish an upper bound on the convergence rate of its mean squared error.

To more formally characterize our conditions on f , consider sampling a single y1. Then (γ̂M )1 =
1
M

∑M
m=1 φ(y1, z1,m)→ γ(y1) as M →∞, as the left-hand side is a Monte Carlo estimator. If f is

continuous around y1, this also implies f(y1, (γ̂M )1)→ f(y1, γ(y1)). Informally, our requirement
is that this holds in expectation, i.e. that it holds when we incorporate the effect of the outer estimator.
More precisely, we define (εM )n = |f(yn, (γ̂M )n)− f(yn, γ(yn))|, and require that E [(εM )1]→ 0
as M → ∞ (noting that as (εM )n are i.i.d. E [(εM )1] = E [(εM )n] ,∀n ∈ N). Informally, this
“expected continuity” assumption is weaker than uniform continuity as it does allow discontinuities
in f , though we leave full characterization of intuitive criteria for f to future work. We are now
ready to state our theorem for almost sure convergence. Proofs for all theorems are provided in the
Appendices.
Theorem 1. For n ∈ N, let (εM )n = |f(yn, (γ̂M )n)− f(yn, γ(yn))|. If E [(εM )1] → 0 as
M →∞, then there exists a τ : N→ N such that Iτ(M),M

a.s.→ I as M →∞.
Remark 1. As this convergence is in M , it implies (and is reinforced by the convergence rate given
below) that it is necessary for the number of samples in the inner estimator to increase with the
number of samples in the outer estimator to ensure convergence for most f . Theorem 3 gives an
intuitive reason for why this should be the case by noting that for finite M , the bias on each inner
term will remain non-zero as N →∞.
Theorem 2. If f is Lipschitz continuous and f(yn, γ(yn)), φ(yn, zn,m) ∈ L2, then the mean squared
error of IN,M converges at rate O (1/N + 1/M).
Inspection of the convergence rate above shows that, given a total number of samples T = MN ,
our bound is tightest when τ(M) = O(M) (see Section C), with a corresponding rate O(1/

√
T ).

Although Theorem 1 does not guarantee that this choice of τ converges almost surely, any other
choice of τ will give a a weaker guarantee than this already problematically slow rate. Future work
might consider specific forms of τ that ensure convergence.

With repeated nesting, informal extension of Theorem 2 suggests that the convergence rate will
become O(

∑d
i=1

1
Ni

) where Ni is the number of samples used for the estimation at nesting depth i.
This yields a bound on our convergence rate in total number of samples that becomes exponentially
weaker as the total nesting depth d increases. We leave a formal proof of this to future work.

5 The Inherent Bias of Nested Inference

The previous section confirmed the capabilities of NMC; in this section we establish a limitation by
showing that any such general-purpose nesting scheme must be biased in the following sense:
Theorem 3. Assume that γ(y) = Ez∼p(z|y)[φ(y, z)] is integrable as a function of y but cannot be
calculated exactly. Then, there does not exist a pair (I,J ) of inner and outer estimators such that

1. the inner estimator I provides estimates γ̂y ∈ Φ at a given y ∈ Y;
2. given an integrable f : Y × Φ→ F ⊆ RDf the outer estimator J maps a set of samples
ζ̂ = {(y1, γ̂y1), . . . , (yn, γ̂yn)}, with γ̂yi generated using I , to an unbiased estimate ψ(ζ̂, f)

of I(f), i.e. E[ψ(ζ̂, f)] = I(f);

3. Ey∼p(y)[E[f(y, γ̂y)|y]]− E[ψ(ζ̂, f)] ≥ 0 for all integrable f , i.e. if I is combined with an
exact outer estimator, there is no f for which the resulting estimator is negatively biased
(see Remark 2).

This result remains even if the inequality in the third condition is reversed from ge0 to le0.
Remark 2. Informally, the first two conditions here simply provide definitions for I and J and state
that they provide unbiased estimation of I for all f . The third condition is somewhat more subtle.
A simpler, but less general, alternative condition would have been to state that I provides unbiased
estimates for any f , i.e. E[f(y, γ̂y)|y] = f(y, γ(y)), ∀f . The additional generality provided by the
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Figure 1: Empirical convergence of NMC on (6). Results are obtained by averaging over 1000
independent runs with τ(N) = N such that convergence rate obtained from Theorem 2 is O(1/

√
T ).

used formulation eliminates most cases in which both I and J are biased, but in such a way that
these biases cancel out. Specifically, we allow I to be biased so long as this bias has the same sign
for all f . As I and J are independent processes, it is intuitively reasonable to assume that J does
not eliminate bias from I in a manner that is specific to f and so we expect this condition to hold in
practice. Future work might consider a completely general proof that also considers this case.

This result suggests that general purpose, unbiased inference is impossible for nested probabilistic
program queries which cannot be mathematically expressed as single inference of the form (1). Such
rearrangement is not possible when the outer query depends nonlinearly on a marginal of the inner
query. Consequently, query nesting using existing systems1 cannot provide unbiased estimation of
problems that cannot be expressed as a single query. However, the additional models that it does
allow expression for, such as the experimental design example, might still be estimable in consistent
fashion as shown in the previous section.

6 Empirical Verification

Strictly speaking, the convergence rates proven in Section 4 are only upper bounds on the worst case
performance we can expect. We therefore provide a short empirical verification to see whether these
convergence rates are tight in practice. For this, we consider the following simple model whose exact
solution can be calculated:

y ∼ Uniform(−1, 1) (6a)
z ∼ N (0, 1) (6b)

φ(z, y) =
√

2/π exp
(
−2(y − z)2

)
(6c)

f(y, γ(y)) = log(γ(y)). (6d)

Figure 1 shows the corresponding empirical convergence obtained by applying (5) to (6) directly, and
shows that, at least in this case, the theoretical convergence rates from Theorem 2 are indeed realised.

7 Conclusions

We have shown that it is theoretically possible for a nested Monte Carlo scheme to yield a consistent
estimator, and have quantified the convergence error associated with doing so. However, we have
also revealed a number of pitfalls that can arise if nesting is applied naı̈vely, such as that the resulting
estimator is necessarily biased, requires additional assumptions on f , is unlikely to converge unless
the number of samples used in the inner estimator is driven to infinity, and is likely to converge at a
significantly slower rate than un-nested Monte Carlo. These results have implications for applications
ranging from experimental design to probabilistic programming, and serve both as an invitation for
further inquiry and a caveat against careless use.

1We note that for certain nonlinear f , it may still be possible to develop an unbiased inference scheme using
a combination of a convergent Maclaurin expansion and Russian Roulette sampling [12].
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A Proof of Almost Sure Convergence (Theorem 1)

Proof. For all N,M , we have by the triangle inequality that

|IN,M − I| ≤ VN,M + UN ,

where

VN,M =

∣∣∣∣∣ 1

N

N∑
n=1

f(yn, γ(yn))− IN,M

∣∣∣∣∣
UN =

∣∣∣∣∣I − 1

N

N∑
n=1

f(yn, γ(yn))

∣∣∣∣∣ .
A second application of the triangle inequality then allows us to write

VN,M ≤
1

N

N∑
n=1

(εM )n (7)

where we recall that (εM )n = |f(yn, γ(yn))− f(yn, γ̂n)|. Now, for all fixed M , each (εM )n is i.i.d,
and our assumption that E [(εM )1]→ 0 as M →∞ ensures E [|(εM )n|] <∞ for all M sufficiently
large. Consequently, the strong law of large numbers means that

1

N

N∑
n=1

(εM )n
a.s.→ E [(εM )1]

as N →∞. This allows us to define τ1 : N→ N by choosing τ1(M) to be large enough that∣∣∣∣∣∣ 1

τ1(M)

τ1(M)∑
n=1

(εM )n − E [(εM )1]

∣∣∣∣∣∣ < 1

M

almost surely, for each M ∈ N. Consequently,

1

τ1(M)

τ1(M)∑
n=1

(εM )n <
1

M
+ E [(εM )1]

almost surely and therefore

Vτ1(M),M <
1

M
+ E [(εM )1]

almost surely.

To complete the proof, we must remove the dependence of UN on N also. This is straightforward
once we observe that UN

a.s.→ 0 as N →∞ by the strong law of large numbers, which allows us to
define τ2 : N→ N by taking τ2(M) large enough that

Uτ2(M) <
1

M

almost surely, for each M ∈ N.

We can now define τ(M) = max(τ1(M), τ2(M)). It then follows that, for all M ,∣∣I − Iτ(M),M

∣∣ ≤ 1

M
+

1

M
+ E [(εM )1]

almost surely. By assumption we have E [(εM )1]→ 0, so that Iτ(M),M
a.s.→ I as desired.
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B Proof of Convergence Rate (Theorem 2)

Proof. Using Minkowski’s inequality, we can bound the mean squared error of IN,M by

E[(I − IN,M )2] = ‖I − IN,M‖22 ≤ U
2 + V 2 + 2UV ≤ 2

(
U2 + V 2

)
(8)

where

U =

∥∥∥∥∥I − 1

N

N∑
n=1

f(yn, γ(yn))

∥∥∥∥∥
2

V =

∥∥∥∥∥ 1

N

N∑
n=1

f(yn, γ(yn))− IN,M

∥∥∥∥∥
2

.

We see immediately that U = O
(

1/
√
N
)

, since 1
N

∑N
n=1 f(yn, γ(yn)) is a Monte Carlo estimator

for I , noting our assumption that f(yn, γ(yn)) ∈ L2. For the second term,

V =

∥∥∥∥∥ 1

N

N∑
n=1

f(yn, (γ̂M )n)− f(yn, γ(yn))

∥∥∥∥∥
2

≤ 1

N

N∑
n=1

‖f(yn, (γ̂M )n)− f(yn, γ(yn))‖2

≤ 1

N

N∑
n=1

K ‖(γ̂M )n − γ(yn)‖2

where K is a fixed constant, again by Minkowski and using the assumption that f is Lipschitz. We
can rewrite

‖(γ̂M )n − γ(yn)‖22 = E
[
E
[
((γ̂M )n − γ(yn))2

∣∣yn]] .
by the tower property of conditional expectation, and note that

E
[
((γ̂M )n − γ(yn))2

∣∣yn] = Var

(
1

M

M∑
m=1

φ(yn, zn,m)

∣∣∣∣∣yn
)

=
1

M
Var (φ(yn, zn,1)|yn)

since each zn,m is i.i.d. and conditionally independent given yn. As such

‖(γ̂M )n − γ(yn)‖22 =
1

M
E [Var (φ(yn, zn,1)|yn)] = O(1/M),

noting that E [Var (φ(yn, zn,1)|yn)] is a finite constant by our assumption that φ(yn, zn,m) ∈ L2.
Consequently,

V ≤ NK

N
O
(

1/
√
M
)

= O
(

1/
√
M
)
.

Substituting these bounds for U and V in (8) gives

‖I − IN,M‖22 ≤ 2

(
O
(

1/
√
N
)2

+O
(

1/
√
M
)2)

= O (1/N + 1/M)

as desired.
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C Optimising the Convergence Rate

We have shown that the mean squared error converges at a rate O(1/N + 1/M). For a given choice
of τ as in Theorem 1, this becomes O(R), where

R = 1/τ(M) + 1/M.

Now let
T = τ(M) ·M

denote the total number of samples used by our scheme. We wish to understand the relationship
between T and R.

First, suppose τ(M) = O(M) as M →∞. This easily gives

1√
τ(M)

= O

(
1√
M

)
as M →∞, so that

1√
T

=
1√
M

1√
τ(M)

= O

(
1

M

)
and as such

R = O

(
1√
T

)
(9)

as M →∞.

In contrast, consider the case that M � τ(M) as M →∞. We then have

1√
M
� 1√

τ(M)

as M →∞, so that

R = O

(
1

M

)
� 1√

M

1√
τ(M)

=
1√
T

as M →∞. Comparing with (9), we observe that, for the same total budget of samples T , this choice
of τ provides a strictly weaker convergence guarantee than in the previous case. A similar argument
shows that the same is true when M � τ(M) also.

D Proof of Inherent Bias (Theorem 3)

Proof. For the sake of contradiction, suppose that a pair (I,J ) of inner and outer estimators satisfies
the conditions in the theorem. Consider the possible pair of instances for f , f1(y, w) = (γ(y)− w)2

and f2(y, w) = −f1(y, w). Since γ(y) cannot be computed exactly by assumption, γ̂y as an estimate
for γ(y) has non-zero variance. Thus, for every y ∈ R, the following inequalities hold almost surely:

f1(y, γ̂y) > f1(y, γ(y)) = 0 = f2(y, γ(y)) > f2(y, γ̂y).

This implies that

Ey∼p(y) [E [f1(y, γ̂y)|y]] > 0 > Ey∼p(y) [E [f2(y, γ̂y)|y]] . (10)

But
E
[
ψ(ζ̂, f1)

]
= I(f1) = 0 = I(f2) = E

[
ψ(ζ̂, f2)

]
. (11)

Thus,(
Ey∼p(y) [E [f1(y, γ̂y)|y]]− E

[
ψ(ζ̂, f1)

])
> 0 >

(
Ey∼p(y) [E [f2(y, γ̂y)|y]]− E

[
ψ(ζ̂, f2)

])
.

This contradicts the third condition in the theorem regardless of whether we use the original ≥ 0 or
the alternative ≤ 0.
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