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Background

Heavy-tailed and skewed
data series arise e.g. in
radio positioning, financial
time series, biostatistics,
and psychiatry.
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Figure 1: Non-line-of-sight causes skew-
ness and outliers to TOA ranging error [2].
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Figure 2: Student’s t (middle) and skew-t (right) models accommodate
an outlier, while Gaussian (left) gives a large estimation error [1].
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Figure 3: Skew t (right) uses the information that large negative outliers
are improbable unlike Gaussian (left) and Student’s t (middle) [1].

Skew normal and t-distributions
Extensions of Gaussian and Student-t-distribution. A multivariate
skew-t variable z∼ST(µ,R,∆, ν) [4, 5] has the hierarchical formula-
tion

z | u, λ ∼ N(µ+ ∆u, 1
λR)

u | λ ∼ N+(0, 1
λI)

λ ∼ Gamma(ν2 ,
ν
2 )

The parameters are
µ: location
∆: skewness
R: spread
ν: degrees of freedom

• λ≡1 is skew normal.
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Figure 4: Skew-t densities with different ∆s

Skew-t measurement update based on variational Bayes and se-
quential truncation approximations [1]:

repeat
q(xk, uk) = Ntrunc([

xk
uk

] ; ·, ·) ≈ N([ xk
uk

] ; ·, ·)
q(λk) = Gamma(λk; ·, ·)

until Converged

Recursive Skew-ARX identification
Assign the matrix-variate-normal–inverse-Wishart prior

p(Rk,∆k) =N(∆k; ∆k|k−1, Rk ⊗ Vk|k−1)

× IW(Rk; Ψk|k−1, νk|k−1)

with a forgetting-factor type state transition and include in the vari-
ational iteration.

0 2000 4000 6000 8000 10000

#measurements

-75

-50

-25

0

25

er
ro

r sk
ew

-e
rr

o
r G

au
ss

ia
n
 (

%
)

median

25% / 75% quant.

5% / 95% quant.

Figure 5: Simulation of AR(25) with skew-normal innovations. Skew-
ARX outperforms the Gaussian algorithm in 95% of the cases.

TOA positioning with skew-t filter
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Figure 6: TOA-ranging based positioning using UWB or GNSS with
skew-t filter and smoother[1, 3]. These extend Kalman filter and smoother.

Financial time series prediction
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Figure 7: Quarterly US GDP prediction with Skew-AR(25)

• Skewed models are more flexible than Gaussian models
• Approximate state-space model inference and system iden-

tification
• VB approximation provides modest computational require-

ments and scalability
• Cramér–Rao lower bounds for filtering & smoothing [1]
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