

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPERE UNIVERSITY OF TECHNOLOGY

Approximate Recursive Identification of Autoregressive Systems with Skewed Innovations Henri Nurminen^{*} and Tohid Ardeshiri^{†,‡}

henri.nurminen@tut.fi, ta417@cam.ac.uk *Tampere University of Technology, Finland, [†]University of Cambridge, UK, [‡]Linköping University, Sweden

Background

Heavy-tailed and skewed

Recursive Skew-ARX identification

Assign the matrix-variate-normal-inverse-Wishart prior

Figure 1: Non-line-of-sight causes skewness and outliers to TOA ranging error [2].

Figure 2: Student's t (middle) and skew-t (right) models accommodate an outlier, while Gaussian (left) gives a large estimation error [1].

Figure 3: Skew t (right) uses the information that large negative outliers are improbable unlike Gaussian (left) and Student's t (middle) [1].

$p(R_k, \Delta_k) = \mathbb{N}(\Delta_k; \Delta_{k|k-1}, R_k \otimes V_{k|k-1})$ $\times \operatorname{IW}(R_k; \Psi_{k|k-1}, \nu_{k|k-1})$

with a forgetting-factor type state transition and include in the variational iteration.

Figure 5: Simulation of AR(25) with skew-normal innovations. Skew-ARX outperforms the Gaussian algorithm in 95% of the cases.

TOA positioning with skew-t filter

Skew normal and *t*-distributions

Extensions of Gaussian and Student-t-distribution. A multivariate skew-t variable $z \sim ST(\mu, R, \Delta, \nu)$ [4, 5] has the hierarchical formula-

tion	z z	$u, \lambda \sim \mathrm{N}$	$(\mu + \Delta u$	$(1, \frac{1}{\lambda}R)$			
	$u \mid \lambda \sim \mathrm{N}_{+}(0, \frac{1}{\lambda}I)$						
	$\lambda \sim \text{Gamma}(\frac{\nu}{2}, \frac{\nu}{2})$						
The parame	ters are	$\overline{\forall}^{0.4}$]	\wedge			A	0
μ : location Δ : skewness						$ \begin{array}{c} - \Delta = 0 \\ - \Delta = 0 $	1 3
R: spread		$\operatorname{ST}(z;$				—-Δ=:	5
ν : degrees	of freedom	-5	0	5_{z} 10) 1	5	20
(1) (1) (1)				1 • 4 •	• 1 1	·m·	

• $\lambda \equiv 1$ is skew normal. Figure 4: Skew-t densities with different Δs

Skew-t measurement update based on variational Bayes and sequential truncation approximations [1]:

> repeat $q(x_k, u_k) = N_{\text{trunc}}(\begin{bmatrix} x_k \\ u_k \end{bmatrix}; \cdot, \cdot) \approx N(\begin{bmatrix} x_k \\ u_k \end{bmatrix}; \cdot, \cdot)$

Figure 6: TOA-ranging based positioning using UWB or GNSS with skew-t filter and smoother [1, 3]. These extend Kalman filter and smoother.

Financial time series prediction

- Skewed models are more flexible than Gaussian models
- Approximate state-space model inference and system identification
- VB approximation provides modest computational requirements and scalability

 $q(\lambda_k) = \text{Gamma}(\lambda_k; \cdot, \cdot)$ until Converged

• Cramér–Rao lower bounds for filtering & smoothing [1]

References

- [1] Nurminen, Ardeshiri, Piché, Gustafsson, Skew-t filter and smoother with improved covariance matrix approximation, http://arxiv.org/abs/1608.07435, 2016.
- 2 Nurminen, Ardeshiri, Piché, Gustafsson, Robust inference for state-space models with skewed measurement noise, IEEE Signal Processing Letters, 2015.
- [3] Nurminen, Ardeshiri, Piché, Gustafsson, A NLOS-robust TOA positioning filter based on a skew-t measurement model, International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2015.
- [4] Azzalini, Dalla Valle, The multivariate skew-normal distribution, Biometrika, 1996.
- [5] Lee, MacLachlan, Finite mixtures of canonical fundamental skew t-distributions the unification of the restricted and unrestricted skew t-mixture models, Statistics and Computing, 2016.