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Abstract

We introduce a framework for modeling parameter symmetries in variational
inference by explicitly mixing a base approximating density over a symmetry
group. We show that this can be done tractably for the case of a Gaussian mixture
over the orthogonal group under an isotropic variance assumption. Initial results
show that inference with a symmetrized posterior avoids component collapse and
leads to improved predictive performance.

1 Introduction

Many probability models commonly used in machine learning are not, strictly speaking, identifiable:
they exhibit parameter symmetries in which the model density is invariant under some class of
transformations of the latent parameters. The resulting multimodal posteriors are not captured well by
most inference procedures: “label switching” is a well known problem in sampling mixture models
(Neal, 1999; Celeux et al., 2000), while algorithms such as EP that attempt to match marginals may
miss crucial joint structure (Nishihara et al., 2013).

It is sometimes thought that variational inference with a mode-seeking divergence such as KL[q‖p]
breaks symmetries by modeling only a single mode of the posterior. However, symmetric modes are
not isolated in latent space: nearby modes can bleed probability mass into each other to create new
modes corresponding to degenerate solutions. This “implicit regularization” results in approximate
inference failing to use a model’s full representational capacity. This effect has been noted for
Gaussian mixture models (MacKay, 2001) and analyzed extensively in the case of matrix factorization
(Nakajima and Sugiyama, 2010; Nakajima et al., 2013). An analogous phenomenon may be observed
in component collapse of variational autoencoders (Dinh and Dumoulin, 2014; Burda et al., 2015).

We propose modeling symmetries directly in variational inference using a symmetrized posterior
formed by explicitly mixing a “base” distribution over the relevant symmetry group, so that our
approximating class captures the same symmetries as the true posterior (Figures 1 and 2). This
paper presents our general framework and demonstrates its application to signflip and orthogonal
symmetries in matrix factorization models, with promising initial results.

2 Matrix factorization and implicit regularization

We focus for concreteness on matrix factorization, although both the problem of parameter symmetries
and our proposed solution framework are more general. We consider the model

U,V ∼ N (0, I)

R ∼ N (UVT /
√
k, σ2

nI)

in which U : n×k and V : m×k are latent trait matrices, representing n users andmmovies (or other
items) each described by k features, and R is an noisy ratings matrix. We assume R is fully observed;
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(a) True posterior p(u, v|r)
has signflip symmetry.

(b) Mean-field Gaussian ap-
proximation fits a degenerate
mode at the origin.

(c) Symmetrized approxima-
tion q̃ mixing q∗(u, v) (dot-
ted) and q∗(−u,−v).

Figure 1: Posteriors from the scalar factorization model r = uv + ε; u, v ∈ R, given observed
r = 1.5. Implicit regularization results from the mean-field posterior attempting to cover both modes,
ending up at the origin. The symmetrized posterior explicitly corrects this effect.

(a) True posterior p(u|r)
yielding predictive mean
E[uvT |r] = 1.30.

(b) Mean-field approximation
is pulled towards the origin,
E[uvT |r] = 0.44.

(c) Symmetrized approxima-
tion q̃, from base Gaussian q∗

(dotted), E[uvT |r] = 1.38.

Figure 2: Marginal posteriors p(u|r) from the overparameterized scalar model r = uvT + ε;
u,v ∈ R1×2, given observed r = 2. This rotational symmetry is a special case of the more general
matrix factorization symmetry in the joint column space of U and V.

the inference problem is to recover the “true” low-rank ratings matrix UVT given noisy observations.
Note that this model is subject to the posterior symmetry p(U,V|R) = p(UT,VT|R) where
T ∈ O(k) is any k × k orthogonal matrix. This includes as special cases a permutation symmetry
between the latent columns, as well as signflip symmetries on each column.

Recent analysis by Nakajima et al. (2013) has obtained an analytic solution to the mean-field
variational objective in this model. They show that latent traits obtained through variational and
even MAP inference shrink each singular value by a factor that depends on the observation noise
σ2
n, so that all singular values below some threshold are zeroed out: the model effectively uses fewer

traits than it was allotted. This “implicit regularization” arises directly from the use of approximate
inference; it can be verified in simple cases that the true Bayesian posterior does not exhibit the same
shrinkage (Figure 3).

We demonstrate that implicit regularization can be avoided by explicitly representing parameter
symmetries in the variational posterior. Our symmetrized posteriors follow the true Bayes posterior in
that they use the full model capacity with no unwanted shrinkage (figs. 3 and 4a); initial experiments
suggest they also improve prediction quality. The next section describes our general framework,
which we then specialize to model the orthogonal symmetries that arise in matrix factorization.
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Figure 3: Predictive mean E[uv|r] in the scalar factorization model r = uv+ε, with u, v, ε ∼ N (0, 1).
Standard mean field (MFVI) and even MAP are subject to degenerate solutions at zero for small r,
while inference with a symmetrized posterior invariant to signflips (SymVI) more closely recovers
the Bayes predictive mean.

3 Symmetrized Variational Inference
We consider probability models of the form p(x, z) where x and z are observed and latent variables,
and perform inference by minimizing the exclusive divergence KL[q‖p] between an approximate
posterior qθ(z) and the true posterior p(z|x). This is equivalent to maximizing a lower bound on the
log model evidence, known as the Evidence Lower Bound or ELBO (Bishop, 2006),

L(θ) = Ez∼qθ [log p(x, z)− log qθ(z)] ≤ log p(x), (1)

which can equivalently be written in terms of the entropyH(qθ) of the approximating posterior:

L(θ) = Ez∼qθ [log p(x, z)] +H(qθ). (2)

The so-called reparameterization trick enables practical inference via gradient-based stochastic
optimization of L(θ), as long as the sampling process z ∼ qθ can be expressed as a differentiable
transformation z = fθ(ε) of a random source ε. (Kingma and Welling, 2013; Kucukelbir et al., 2016).

We are interested in cases where the model density in the latent space is invariant under the action of
transformations from a group G, so that p(x, z) = p(x,Tz) ∀ T ∈ G. We propose to exploit this
structure by imposing the same invariance on our variational posterior.

We define a symmetrized posterior q̃θ by a two-step sampling process: first sample z∗ from some
base posterior q∗θ , then apply a random transformation T to generate z = Tz∗. Formally we write
the density of q̃θ as an explicit mixture with respect to the uniform (Haar) measure V (T), given by

q̃θ(z) =

∫
T∈G

q∗θ(T
−1z)

∣∣T−1∣∣ dV (T) (3)

where
∣∣T−1∣∣ is the Jacobian determinant (unity for orthogonal transformations). It is clear that this

respects the symmetry q̃θ(z) = q̃θ(Tz) for all T ∈ G.

Plugging q̃θ into the ELBO, we note that expectations under q̃θ can be written as a nested expectation
over a base sample z∗ and transformation T:

L(q̃θ) = Ez∼q̃θ [log p(x, z)− log q̃θ(z)]

= Ez∗∼q∗θ [ET [log p(x,Tz∗)− log q̃θ(Tz∗)]]

Since the model density p is invariant to T by assumption, and the symmetrized posterior q̃θ is also
invariant by construction, the expectation over T is vacuous. Dropping it yields the objective

L(q̃θ) = Ez∗∼q∗θ [log p(x, z
∗)− log q̃θ(z

∗)] , (4)

which differs from (1) only in that we are now evaluating the mixture density log q̃θ in place of the
original log qθ. By straightforward manipulation we obtain an equivalent form,

L(q̃θ) = Ez∗∼q∗θ [log p(x, z
∗)] +H(q∗θ) +KL[q∗θ‖q̃θ], (5)
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(a) Singular values of predictive mean E[UVT |R]. (b) Mean absolute entrywise reconstruction
error ‖E[UVT |R]−UVT ‖1.

Figure 4: Inference on 80 synthetic matrices sampled with n = m = 40, k = 20, and σn = 2.
Orthogonally symmetrized VI produces full-rank posteriors (left) that yield more accurate predictions
than MFVI or MAP (right).

which is equal to (2) plus a nonnegative term KL[q∗θ‖q̃θ], so this bound is at least as tight as (2). The
KL term measures the additional information needed to code a sample from the symmetrized q̃θ given
a sample from q∗θ ; in the case of well-separated discrete modes, this is simply the the (log) number of
modes.1 When modes overlap, it measures the discrepancy between q∗ and its symmetrized modes,
going to zero in the case where q∗ is already symmetric (e.g., an isotropic Gaussian at the origin). The
symmetrized bound (5) therefore discourages q∗ from straddling multiple modes, so that it instead
attempts to capture a single mode as well as possible.

3.1 Signflip symmetry

The framework described above is applicable generally to any base family q∗θ and symmetry group G;
the challenge in practice is to efficiently compute or bound the symmetrized divergenceKL[q∗θ‖q̃θ] =
E[log q∗θ(z∗)− log q̃θ(z

∗)]. Under a Monte Carlo approximation the challenge reduces to computing
the log density− log q̃θ(z

∗) at values z∗ sampled from the base posterior. In the simple case of signflip
symmetries, this can be done tractably with an explicit sum log q̃θ(z) = log 1

2 (q
∗
θ(z) + q∗θ(−z)).

Signflip symmetries arise in the special case of matrix factorization where all quantities are scalar
(Figure 1). In this case it is also tractable to numerically compute the Bayes predictive mean. Figure 3
compares predictive means as a function of the observed scalar value r, showing that while standard
methods exhibit degenerate regularization, predictions using the symmetrized posterior track the true
Bayes prediction much more closely.

3.2 General orthogonal symmetry

Our main technical contribution is an efficient approximation to the continuous mixture density

log q̃(X) = log

∫
T∈O(k)

N (X;MT,TTΣT)dV (T)

in which the columns of an elementwise matrix Gaussian q∗(X) = N (X;M,Σ) are mixed over the
orthogonal group O(k) (Figure 2). For space considerations we defer details to Appendix A. Our
current analysis assumes an isotropic covariance (Σ = cI) which we hope to relax in future work.

Informally, any rotation T acting within the nullspace of M generates a mixture component MT =
M equivalent to the base distribution; such rotations are “wasted” in the sense that they do not

1It is common to adjust naïve evidence bounds by a symmetry-counting term, e.g., log 2n for signflip
symmetries or logn! for permutation symmetries, but this is incorrect when the approximate posterior straddles
multiple modes. The KL term in (5) can be seen as the generally correct form of this adjustment, which always
yields a valid evidence bound.
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increase the mixture entropy H(q̃) relative to the base H(q). Inference using the mixture entropy
H(q̃) therefore penalizes the nullspace dimension of the posterior mean, avoiding component collapse
by encouraging nonzero singular values. This effect is seen in Figure 4a, which plots singular values
of the predictive mean E[UVT |R] from a relatively noisy (σn = 2) synthetic 20-trait model. While
the mean field VI and MAP solutions (and MFVI with isotropic covariance, included for comparison)
shrink many traits to zero, symmetrized VI uses the model’s full capacity. Figure 4b shows that
this is reflected in predictive performance: symmetrized VI yields better reconstructions of the true
generative ratings UVT than the implicitly-regularized MAP and (especially) mean field estimates.

4 Future work

These preliminary results demonstrate that explicitly accounting for parameter symmetries can yield
better inferences. In future work we hope to consider symmetrization of non-isotropic Gaussians and
more flexible approximating classes (Salimans et al., 2015; Rezende and Mohamed, 2015; Tran et al.,
2016), as well as permutation, translation, and scaling symmetries. We are especially interested in
the use of symmetrized posteriors for automatic relevance determination (ARD) and model selection,
as well as extensions to stochastic inference in “deep” models such as variational autoencoders.
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A Orthogonal Gaussian mixture densities

We consider as a base density the elementwise (mean-field) Gaussian

q∗(X) = N (X;M,S) =

n+m∏
i=1

k∏
j=1

N (xij ;mij , sij)

in which we let M,S contain elementwise means and variances respectively for a matrix-valued

variable X; in matrix factorization we will let X =

[
U
V

]
∈ R(n+m)×k be the stacked matrix of

latent traits. We will focus on the restrictive case where each row is described by the same diagonal
covariance Σ ∈ Rk×k, so that the density can be written

q∗(X) = N (X;M,Σ) ∝ exp

{
−1

2
Tr
[
(X−M)Σ−1(X−M)T

]}
;

below we will restrict this further to the case where Σ = cI is isotropic. We hope to relax both of
these assumptions in future work.

We consider the symmetrized approximate posterior

q̃(X) =

∫
T∈O(k)

N (XTT ;M,Σ)dV (T) =

∫
T∈O(k)

N (X;MT,TTΣT)dV (T)

which is a continuous mixture of Gaussians with means and (co)variances corresponding to rotations
within the column space of M. For symmetrized inference we must compute the divergence

KL[q∗θ‖q̃θ] = Eq∗
[
log

q∗θ(X)

q̃θ(X)

]
= Eq∗

[
− log

∫
T∈O(k)

N (XTT ;M,Σ)

N (X;M,Σ)
dV (T)

]
. (6)

We approximate the expectation by Monte Carlo, so that it remains only to evaluate the interior
integral rθ(X) = − log

∫
T∈O(k)

N (XTT ;M,Σ)
N (X;M,Σ) dV (T). Examining this more closely,

rθ(X) = − log

∫
T∈O(k)

e−
1
2 Tr[(XTT−M)Σ−1(XTT−M)T ]+ 1

2 Tr[(X−M)Σ−1(X−M)T ]dV (T)

= − log

∫
T∈O(k)

e−
1
2 (Tr[XTX(TTΣ−1T−Σ−1)])e

Tr
[
Σ−1 MTX+XTM

2 (TT−I)
]
dV (T)

= − log

∫
T∈O(k)

f(T)g(T)dV (T)
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we find that it is effectively an inner product of two functions f, g over the orthogonal group. The first
factor, f(T) = exp

{
− 1

2

(
Tr
[
XTX

(
TTΣ−1T−Σ−1

)])}
, measures the discrepancy between the

precision matrix Σ−1 and its transformed counterpart TTΣ−1T, while the second factor, g(T) =

exp
{

Tr
[
Σ−1 MTX+XTM

2 (TT − I)
]}

, measures the extent to which a given transformation T

aligns the observed value X with the mean M. Note that f vanishes in the case of isotropic
covariance Σ = cI, since this implies TTΣ−1T = Σ−1. In this case we have

rθ(X) = − log

∫
T∈O(k)

g(T)dV (T)

= − log

∫
T∈O(k)

exp

{
Tr
[
1

2c
(MTX + XTM)(TT − I)

]}
dV (T),

and letting A = 1
2c (M

TX + XTM), this simplifies to

= − log

∫
T∈O(k)

exp
{

Tr
[
ATT

]
− Tr [A]

}
dV (T)

= Tr [A]− log 0F1

[
k

2
;
1

4
AAT

]
where the hypergeometric function 0F1

[
k
2 ;

1
4AAT

]
=
∫
T∈O(k)

exp
{

Tr
[
ATT

]}
dV (T) is a form

of matrix-argument Bessel function (Herz, 1955), also arising in the analysis of the non-central
Wishart distribution (Muirhead, 1982). Notably it depends on A only through its singular values
(σi)

k
i=1. This conforms with the intuition, stated above, that the effect of inference with an orthogonal

mixture of Gaussians should be to encourage nonzero singular values in M (and, by extension, A).

Butler and Wood (2003) derive a Laplace approximation to 0F1, given by

0F1

[
k

2
;
1

4
AAT

]
≈

∏k
i=1(1− ŷ2i )k/2eσiŷi√∏k
i=1

∏k
j=1(1− ŷ2i ŷ2j )

(7)

for ŷi = 2σi/(k
√

4σ2
i /k

2 + 1 + 1); in their evaluations this approximation demonstrates “very high
accuracy in a variety of settings”. It can be implemented stably in the log domain as a differentiable
function of the singular values σ.

We use use the Laplace approximation (7) to implement the divergence (6), with automatic gradients
computed using TensorFlow. Code is given in Listing 1. Although TensorFlow does not implement
gradients for the SVD operator A = Udiag(σ)VT , we exploit the fact that Udiag(σ) = AV,
allowing us to approximate gradients ∂σ(A)

∂A by differentiating through the column norms of AV
holding fixed the singular vectors V. Note that A is a k × k matrix, where the trait dimension
k � n,m does not depend on the data size, so computing the SVD on each gradient update is
relatively cheap. In practice we do not observe significant slowdowns from inference under the
symmetrized q̃ relative to the base posterior q∗.
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def gaussian_orthog_stochastic_kl(X, M, c):
# X, M: 2D Tensors of matching dimensions
# c: scalar (isotropic) variance
# returns: stochastic estimate of KL[ q* | \tilde{q} ] for
# q* ~ N(X; M, cI) under orthogonal symmetry

tmp = tf.matmul(tf.transpose(X), M)
A = (tmp + tf.transpose(tmp) ) / (2*c)
svs = differentiable_singular_vals(A)
r = tf.trace(A) - log_bessel(svs, k)
return r

def differentiable_singular_vals(A):
# returns singular vals of A with approximate gradients.
d, u, v = tf.svd(A)
ud = tf.matmul(A, tf.stop_gradient(v))
return tf.sqrt(tf.reduce_sum(tf.square(ud), 0))

def log_bessel(svs, n):
def r(u):

return u/(tf.sqrt(tf.square(u) + 1.0) + 1.0)
ys = r(2.0*svs / n)
y2 = tf.square(ys)
y2r = tf.reshape(y2, (n, 1))
y2pairs = tf.matmul( y2r, tf.transpose(y2r))
log_denom = .5 * tf.reduce_sum(tf.log(1-y2pairs))
log_num = tf.reduce_sum(svs*ys + n/2.0 * tf.log((1-y2)))
return log_num - log_denom

Listing 1: TensorFlow implementation of orthogonally symmetrized Gaussian log density.
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