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Abstract

We present a black-box variational inference (BBVI) method to approximate in-
tractable posterior distributions with an increasingly rich approximating class.
Using mixture distributions as the approximating class, we first describe how to
apply the re-parameterization trick and existing BBVI methods to mixtures. We
then describe a method, termed Variational Boosting, that iteratively refines an ex-
isting approximation by defining and solving a sequence of optimization problems,
allowing the practitioner to trade computation time for increased accuracy.

1 Introduction

Variational inference (VI) [[7, 14} 1] is a family of methods designed to approximate an intractable
target distribution (typically known only up to a constant) with a tractable surrogate distribution. V1
procedures typically minimize the Kullback-Leibler (KL) divergence of the approximation to the
target by maximizing an appropriately defined tractable objective. Often, the class of approximating
distributions is fixed, and typically excludes the target distribution (and its neighbors), which prevents
the variational approximation from becoming arbitrarily close to the true posterior.

Markov chain Monte Carlo (MCMC), an alternative class of inference methods, approximate target
distributions with samples drawn from a Markov chain constructed to admit the target distribution at
each marginal. MCMC methods allow a user to trade computation time for increased accuracy —
drawing more samples will make the approximation closer to the true target distribution. However,
MCMC algorithms typically must be run iteratively, making them difficult to parallelize. Furthermore,
correctly specifying MCMC moves can be more algorithmically restrictive than optimizing an
objective (e.g. data subsampling in stochastic gradient methods).

We propose a variational inference method that gradually allows the approximation to become more
and more complex, affording the practitioner a trade-off between time and accuracy. Our method
builds on black-box variational inference methods using the re-parameterization trick [13\ 18} [10],
applicable to a very general class of target distributions.

Variational Inference Given a target distribution with densityﬂ 7(x) for a multivariate random
variable x € X, variational inference approximates () with a tractable approximate distributionE]
q(z; \), from which we can draw samples and form sample-based estimates of functions of x
(e.g. posterior credible intervals, Bayesian predictions, etc.). Variational methods typically minimize
K L(gx||7) between the approximation and the target as a function of variational parameters A. This
is framed as an optimization problem — we optimize the K L objective (or an equivalent one) with

'We assume () is known up to a constant, 7(x) = Cn(x) for some constant C; we may omit ~ simplicity.
We treat the density function as a synecdoche for the entire law, and use g(x; ) and ¢ (z) interchangeably
at the risk of slight notational abuse.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Figure 1: Variational Boosting applied to a 2-d target at steps C = 1,2,3,8. The background
(grey/black) contours depict the target distribution, and the foreground (red) contours depict the
iterative approximations.

respect to A. Directly minimizing K L(gy||r) is often intractable, however, we can construct a
tractable objective that, when maximized, corresponds to minimizing K L(gy ||7). This objective is
often referred to as the evidence lower bound (ELBO), written

L) =E,, [In7(z) —lng(z; )] ELBO (1)
=E,, [In7(z) —Ing(z; A\)] + InC 7(x) = Cr(x)(unknown const.) 2)
=InC — KL(gx||) 3)
<InC=1In / 7(x)dx marginal likelihood 4)

which, due to the non-negativity of K L(g||r), is a lower bound on the normalization constamﬂ of
(x).

Variational methods typically define (or derive) a family of distributions @ = {g(;\) : A € A}
parameterized by A, and maximize the ELBO with respect to A € A. Most commonly the class Q)
is fixed, and there exists some (possibly non-unique) A* € A for which K L(gy||r) is minimized.
When the family @ does not include 7, there will be a non-zero K L gap between ¢(-; \*) and 7, and
that discrepancy will induce bias in posterior summaries and predictions.

In the following section, we propose an algorithm that iteratively grows the approximating class @,
and reframes the VI procedure as a series of optimization problems.

2 Method

We define our approximate distribution to be a mixture of C' simpler component distributions

C
¢ (w;N) = pege(wiAe) sty pe=1 %)
c=1 c

where we have defined component distributions qcﬂ mixture component parameters A =
(A1, .., A¢), and mixing proportion parameters p = (p1, ..., pc ). The component distributions can
be any distribution over « from which we can draw samples using a continuous map (e.g. multivariate
normals [6], or a composition of invertible maps [11]]).

Our method begins with a single mixture component, C' = 1. We use existing VI methods to fit
the first component parameter, A, and p; is fixed to 1 by definition. At the next iteration, we fix
A1 and introduce a new component into the mixture, go(x; A\2). We then introduce a new ELBO
objective as a function of new component parameters, Ao, and a new mixture weight, p,. We then
optimize this objective until convergence. At each subsequent iteration, we introduce new component
parameters and a mixing weight, and then we optimize the new objective. We refer to this procedure
as variational boosting, inspired by methods for learning strong classifiers by weighting an ensemble
of weak classifiers.

3Often referred to as the marginal likelihood, p(data), in Bayesian inference.

*We denote full mixtures with parenthetical superscripts, ¢‘“?, and components with naked subscripts, ¢c.



In order for our method to be applicable to a general class of target distributions, we use black-box
variational inference methods and the re-parameterization trick [|13| 8, |10] to fit each component
and mixture weights. The re-parameterization trick is a method for obtaining unbiased estimates
of the gradient of the ELBO. These gradient estimates can then be used to optimize the ELBO
objective using a stochastic gradient optimization method. However, using mixtures as the variational
approximation complicates the use of the re-parameterization trick. Details on the re-parameterization
trick and its use in mixtures are in Appendix [A]

2.1 Variational Boosting

Fitting the first component The procedure starts by fitting an approximation to 7(x) with a
distribution that consists of a single component. We do this by maximizing the first ELBO objective

LY =B, [In7(x) — Ingy(z; M) (6)
A = argmax LV ();). (7

1

Depending on the forms of 7 and ¢;, optimizing the ELBO can be accomplished by various methods.
One general method for fitting a continuous valued component is to compute stochastic, unbiased
gradients of £(\1), and use stochastic gradient optimization. See Appendix A for details. After
convergence (or close to it) we fix A; to be A}.

Fitting component C' + 1 After iteration C, our current approximation to 7(x) is a mixture
distribution with C' components

C
¢ D (@; ) =Y pegel; Ae) ®)
c=1

where A = ({p¢, Ac}e) is a list of component parameters and mixing weights, and g.(x; \.) is the
component distribution parameterized by A.. Adding a new component introduces a new component
parameter, Ac1, and a new mixing weight, pc1. In this section, the mixing parameter pc41 € [0, 1]
mixes between the new component, g1 (+; Ac41) and the existing distribution, ¢©). The new
approximate distribution is

¢ (@ poti Aorr) = (1= pei1)qd' (@) + potrgos (@5 Aogr)
The new optimization objective, as a function of po41 and Aoy is

£(C+1)( (C+1)(

pot1, Ac+1) = By gesn {ln m(r) —Ing ; )\C+1,Pc+1)}

(C+1)(

= (1= por1)Eyer [Inm(@) =g (@ A0, posn)|

@D (25 A1, Pc+1)}

+ pC+1]E(1‘c+1 |:1I1 ﬂ'(l‘) —1In q
Above we have separated out two expectations — one with respect to the existing approximation
(which is fixed), and the other with respect to the new component distribution. Because we fix
the existing component distributions we only need to optimize the new component parameters
Ac+1, Po+1, allowing us to use the re-parameterization trick and Monte Carlo gradients to optimize
L€+ The details of component initialization are in Appendix Figuredepicts this procedure
on a simple, two-dimensional target distribution.

2.2 Related Work

Using a mixture model as an approximating distribution in variational inference is a well-studied
idea. Mixtures of mean field approximations [6] introduced mean field-like updates for a mixture
approximation using a bound on the entropy term and model-specific parameter updates. Nonpara-
metric variational inference [3] is a black-box variational inference algorithm that approximates a
target distribution with a mixture of equally-weighted isotropic normals. The authors use a lower
bound on the entropy term in the ELBO to make the optimization procedure tractable. Similarly,
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Figure 2: Comparison of univariate and bivariate marginals for the binomial hierarchical model. Each
histogram/scatterplot results from 20,000 NUTS samples. Top left: Bivariate marginal (x, 8g) HMC
samples and a mean field approximation (MFVI). Top Right, the same bivariate marginal, and the
Variational Boosting approximation. Bottom: comparison of NUTS, MFVI, and VBoost on univariate
marginals (global parameters).

present a method for fitting mixture distributions as an approximation. However, their method is
restricted to mixture component distributions within the exponential family, and a joint optimization
procedure. Another related thread of research is boosting density estimation , which iteratively
improves unsupervised models of data. Finally, we note that [4] independently and in parallel propose
a closely-related idea for an iterative “boosted” construction of a variational approximation.

3 Experiments and Analysis

Hierarchical Binomial Regression We test out our posterior approximation on a hierarchical
binomial regression model’| We borrow an example from [2]], and estimate the the binomial rates of
success (batting averages) of baseball players using a hierarchical model — details of the model are
in Appendix [C]

To highlight the fidelity of our method, we compare Variational Boosting to mean field VI and the
No-U-Turn Sampler (NUTS) [5]. The empirical distribution resulting from 20k NUTS samples is
considered the “ground truth” posterior in this example. Figure [2]compares a selection of univariate
and bivariate posterior marginals. We see that Variational Boosting is able to closely match the NUTS
posterior estimate, allowing the user to improve upon the MFVI approximation.

4 Discussion and Conclusion

We have proposed a variational inference method that iteratively incorporates new components into
the approximation. We see multiple directions for future work. The Variational Boosting framework
allows for more flexible component distributions than diagonal Gaussians. For instance, compositions
of invertible maps have been used to enrich variational families [11]], as well as auxiliary variable
variational models [9], both of which could be used as component distributions in a larger mixture. We
also plan to explore alternative optimization procedures. While this work uses first-order stochastic
gradient methods to fit variational approximations, natural gradient and second-order optimization
methods have been shown to be effective and more efficient.

SModel and data from the mc-stan case studies, http://mc-stan.org/documentation/
case-studies/pool-binary-trials.html
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A The re-parameterization trick

The re-parameterization trick is a method for computing low-variance estimates of the gradient of an objective
for which we only have an unbiased estimator

L(A) = Eq [In7(z) — Ing(z; A)]

L
1
~ T Z [ln m(29) — Inq(z?; )\)] 29 ~ gz \)
=1

To obtain a Monte Carlo gradient of £(\) using the re-parameterization trick, we first separate the randomness
needed to generate z® from the parameters A, by defining a deterministic map fq(zo; \) = z® such that
To ~ qu] implies z® ~ g(x; \). Then, we can differentiate through f; with respect to A to obtain a gradient
estimator. This takes advantage of the following equivalence
L(A) =Egzng, [Inm(x) — Ing(z; \)] )
= Evgmao [In7(fo(@0; N)) — Inq(fy (@i A); V)] (10)
Now that the stochasticity has been separated from parameters A\, we can move the gradient operator into the
expectation

L(A) = VaEzgnge Inm(fg(zo; X)) — Ing(fq(zo; A); A)] (11)
= Eagngo Vi I (£ (w03 A)) — Inq(fq (o5 A); A)] (12)
which directly translates the Monte Carlo objective estimator into a Monte Carlo objective gradient estimator.

A.1 The re-parameterization trick for mixtures

The re-parameterization trick when q is a mixture, however, is less straightforward. The sampling procedure for
a mixture model typically contains a discrete component (i.e. sampling component identities), which is a process
that cannot be differentiated through. We circumvent this complication by re-writing the variational objective as
a weighted combination of expectations with respect to individual mixture components. Because of the form of
the mixture, we can write the ELBO as

LA, p) =Eq[Inw(z) — Ing(z; \)]
C
= / (chqc(w;kc)> (In7(z) — In g(z; A)] da
C
= ch/qc(x;/\c) [In7(z) — Ing(x; \)] do

c
= Z pcEq. [In7(z) — Ing(x; A)]

which is a function of expectations with respect to mixture components. If these distributions are continuous,
and there exists some function fc(xo; A) such that fc(xo; A) ~ go(-; A) when zo ~ qo, then we can apply the
re-parameterization trick to each component to obtain gradients of the ELBO

C
VLA, p) = Vi, Z peBaunqgen [Inm(z) — Ing(z; A)]

c=1

C
= PeEograg [Vac Inm(fe(@03 Ac)) = Vi, Ing(fe(o; Ac))] -
c=1
Variational Boosting uses the above fact to use the re-parameterization trick in a component-by-component
manner, allowing us to improve the variational approximation as we incorporate and fit new components.

B Component Initialization

Initializing Components Introducing a new component requires initialization of component parameters.
When our component distributions are mixtures of Gaussians, we found that the optimization procedure is
sensitive to initialization. We found that the following importance-weighted scheme improves the optimization
objective. To initialize a new mean, pc 1, we first draw L samples from the existing distribution, ¢ ~ ¢\,
For each sample, we compute an importance weight, In w® = In w(z) — In ¢'©). We initialize te+1 to the
sample with the largest importance weight. We initialize this component to be small, and the new mixing weight
to be small (around .01).

*Here, qo is some base distribution that is, importantly, not a function of \.



C Example Hierarchical Model

The model of the data is

¢ ~ Unif hyper prior (13)
K ~ Pareto(1, 1.5) hyper prior (14)
0; ~ Beta(¢ -k, (1 — @) - K) player j prior (15)
y; ~ Binomial(Kj,6;) player j hits (16)

where y; is the number of successes (hits) player j has attempted in K; attempts (at bats). Each player has a
latent success rate 6, which is governed by two global variables s and ¢. There are 18 players in this small
example, with a total of D = 20 parameters. This model is not conjugate, and requires approximate Bayesian
inference.
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