
B3O: Bayes Empirical Bayes by Bayesian
Optimization

James McInerney
contact@jamesmc.com

Abstract

There is rapidly growing interest in using Bayesian optimization to tune learn-
ing parameters and hyperparameters for approximate inference algorithms that
take a long time to run. For example, Spearmint is a popular software package
for selecting the optimal number of layers and learning rate in neural networks.
But given that there is uncertainty about which hyperparameters give the best
predictive performance, and given that fitting a model for each choice of hyperpa-
rameters is costly, it is arguably wasteful to “throw away” all but the best result,
as per Bayesian optimization. In this paper, I consider an alternative approach
that uses all the samples from the Bayesian optimization procedure to average
over the uncertainty in model hyperparameters. The resulting approach, Bayes
Empirical Bayes by Bayesian Optimization (B3O), predicts held-out data better
that Bayesian optimization in two experiments on logistic regression and latent
Dirichlet allocation.

1 Introduction

There is rapidly growing interest in using Bayesian optimization (BO) to tune learning parameters
and hyperparameters for approximate inference algorithms that take a long time to run (Snoek et al.,
2012). Such tuning by hand was previously a time consuming task requiring trial, error, and expert
knowledge of the model. To capture this knowledge, BO uses a meta-model (usually a Gaussian
process) as a guide to regions of high performance to sequentially explore hyperparameters.

BO for approximate inference algorithms is a form of model selection in which some objective, such
as predictive likelihood or root mean squared error, is optimized with respect to hyperparameters η.
Thus, it is an empirical Bayesian procedure where the marginal likelihood is replaced by a proxy
objective. Empirical Bayes optimizes the marginal likelihood of data set X ,

η̂ := arg max
η

∫
p(X | θ)p(θ | η)dθ, (1)

then uses p(θ | X, η̂) as the posterior distribution over the unknown model parameters θ (Carlin
and Louis, 2000). Empirical Bayes is applied in different ways, e.g., gradient-based optimization
of Gaussian process kernel parameters, optimization of hyperparameters to conjugate priors in
variational inference. What is special about BO is that it performs empirical Bayes in a way that
requires calculating the posterior p(θ |X, η(s)) for each member in a sequence 1, . . . , S of candidate
hyperparameters η(1), η(2), . . . , η(S). Often these posteriors will be approximate, such as a point
estimate, a Monte Carlo estimate, or a variational approximation. Nonetheless, these operations are
usually expensive to compute.

Therefore, what is surprising about BO for approximate inference is that it disregards most of the
computed posteriors J = {p(θ | X, η(s)) | s ∈ [1, S], η(s) 6= η̂} and keeps only the posterior
p(θ |X, η̂) that optimizes the marginal likelihood. It is surprising because the intermediate posteriors
J have something to say about the data, even if they condition on hyperparameter configurations



that do not maximize the marginal likelihood. In other words, when we harbour uncertainty about η,
should we be more Bayesian? Yes, especially if one believes there is a danger of overfitting η on the
validation set, which is the case as the dimensionality of the hyperparameters grows.

Bayes empirical Bayes (Carlin and Louis, 2000) extends the empirical Bayes paradigm by introducing
a family of hyperpriors p(η | λ) indexed by λ and calculates the posterior over the model parameters
by integrating,

p(θ |X,λ) =

∫
p(θ |X, η)p(η | λ)dη. (2)

This leads naturally to what one might call type II empirical Bayes where where the nuisance
hyper-hyper-parameter λ is maximized out,

λ̂ := arg max
λ

∫ ∫
p(X | θ)p(θ | η)p(η | λ)dθdη, (3)

and p(θ |X, λ̂) is used as the posterior. Comparing Eq. 3 to Eq. 1 highlights that type II empirical
Bayes adds an extra layer of marginalization that can be exploited with set J at hand. Note the
distinction between marginalizing the hyperparameters to the model vs. hyperparameters to the GP.
Eq. 3 describes the former; the latter is already a staple of BO (Osborne, 2010).

In this paper, I present Bayes empirical Bayes for Bayesian optimization (or B3O), an extension to
BO that approximates Eq. 3 and makes use of all the posteriors computed during standard Bayesian
optimization in the following Monte Carlo approximations to give an approximate posterior,

p(θ |X, λ̂) ≈
S∑
s=1

w̄
(s)

λ̂
p(θ |X, η(s)), where η(s) ∼ As(·) (4)

λ̂ ≈ arg max
λ

S∑
s=1

w̄
(s)
λ

∫
p(X | θ)p(θ | η(s))dθ, where η(s) ∼ As(·) (5)

for the set of importance weights W = {w̄(s)
λ | s ∈ [1, S]} that correct for the optimization procedure

As(η
(s)) used to select candidate η(s) while accounting for the prior p(η(s) | λ). In the sequel, I

expand on the definition of w̄(s), present the B3O algorithm, test it on some concrete models, and
briefly discuss related work.

2 Bayes Empirical Bayes by Bayesian Optimization (B3O)

The approximation in Eq. 4 sums over the uncertainty of hyperparameter selection for learning from
a dataset X . This sum expresses the posterior p(θ | X, λ̂) in terms of a weighted sum over every
posterior candidate p(θ |X, η(s)) calculated during BO. The weights play the role of correcting for
the bias introduced by the candidate selection procedure As(η(s)) and account for the prior over

hyperparameters, w̄(s)
λ ∝

p(η(s) | λ)
As(η(s))

such that
∑
s w̄

(s)
λ = 1 (normalized to reduce the variance of the

overall estimate (Owen, 2014)). Both distributions are given next.

Acquisition Probability There are many choices of acquisition function in BO, such as the ex-
pected probability of improvement, probability of improvement, and upper confidence bound (Brochu
et al., 2010). These are all deterministic policies meaning that they do not share the same non-zero
support as the target distribution p(η | λ), making them unsuitable for the importance sampling
reweighting in Eq. 5 for B3O.

Thompson sampling is a stochastic policy consisting of two steps: (1) sample f (s) ∼ N (y|m(s),Σ(s)),
and, (2) choose η(s) = arg minη f

(s)(η), where (m(s),Σ(s)) is the posterior mean and covariance of
the meta-model. This procedure has been shown to be competitive with other acquisition functions
for a range of problems (Chapelle and Li, 2011). It balances exploration with exploitation because
regions with small posterior means and regions with high variance are both more likely to appear
as the minimum point in the sampled function y(s). For these reasons, Thompson sampling is the
assumed acquisition method for the rest of the paper.
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Table 1: Logistic Regression, MNIST dataset
Method Log Lik (per image) Accuracy (per image)

Bayes empirical Bayes by Bayesian opt. (B3O) -0.3804 8.81%
Bayesian optimization -0.3839 8.94%

Table 2: LDA, 20 Newsgroups dataset
Method Total Log Lik Log Lik (per word)

Bayes empirical Bayes by Bayesian opt. (B3O) -396747 -6.39
Bayesian optimization -474772 -7.65

After discretizing the input space to D possible candidates, the hyperparameter selection probability
for Thompson sampling is,

A(ηi) = EN (f(η1:D) |m,Σ)

 D∏
j 6=i

I[f(ηi) < f(ηj)]

 , (6)

where I have suppressed the (s) index to simplify notation, and I[b] is the Iverson bracket evaluating
to 1 when b is true and 0 otherwise. The Monte Carlo estimator of Eq. 6 has high variance so I discuss
an approximation in Appendix B that assumes independence of the dimensions of f .

Hyperparameter Prior The other component for the weights in Eq. 4 is the prior over the hyper-
parameters p(η | λ). In this work, I place a uniform mass over a subset J ′ ⊂ J of the posteriors,
where |J ′| = 1

10 |J |. Therefore, after discretizating the input space, p(ηi | λ) = I[λi=1]
|J′| , where λ is a

binary vector of length |J | and
∑
i λi = 1

10 |J |. B3O maximizes Eq. 5 with respect to λ.

In summary, the B3O algorithm is given in Algorithm 1 in Appendix A. The computational complexity
of B3O is the same as for BO, which is dominated by the D posterior approximations and inverting
the D-by-D matrix to calculate the GP posterior (an O(D3) operation).

3 Experiments

I apply B3O and BO to two approximate inference algorithms and two data sets. The first is
maximum a posteriori logistic regression on the MNIST digit data set (LeCun et al., 1998). The
second is stochastic variational inference on latent Dirichlet allocation (SVI-LDA) applied to the
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(a) Negative log likelihood on validation data
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(b) Negative log likelihood on test data

Figure 1: Performance in negative logarithm of the predictive likelihood for the validation data (left
plot) and test data (right plot). Each iteration represents a different hyperparameter setting.
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20 Newsgroups data. In both cases, I find that B3O outperforms BO on predictive likelihood and
accuracy. The performance improvement is larger in SVI-LDA, which has 4 hyperparameters to
optimize, supporting the hypothesis stated in Section 1 that BO is vulnerable to overfitting on the
validation data and that B3O protects against this via approximate marginalization.

Throughout, I randomly split the data into into training, validation, and test sets. BO and B3O
evaluate performance on the validation set (after training on the training set) to determine the best
hyperparameters. The test data is only used at the very end to report overall performance.

3.1 Logistic Regression

I apply logistic regression to the MNIST digit data set, comprising 70k images of handwritten digits
0-9, with supervision labels. The data set was binarized and split into 50k training, 10k validation,
and 10k test images. The approximate inference algorithm used was the maximum a posteriori
estimate of the coefficients θ in Eq. 5 as a delta function p(θ |X, η) ≈ δX,η(θ̂) found through gradient
ascent. This requires the selection of two hyperparameters: the strength of the prior, expressed on
the scale [0.0001, 1] as the relative proportion of the prior w.r.t. the data, and the constant learning
rate, expressed on the loge scale [−10, 0]. Table 1 compares the performance in log likelihood and
accuracy on the test set for both approaches, showing that B3O does slightly better than BO.

3.2 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) finds topic structure in a set of text documents expressed as K
word distributions (one per topic) and D topic distributions (one per document). I apply stochastic
variational inference to LDA (Hoffman et al., 2013), a method that approximates the posterior over
parameters p(θ | X, η) in Eq. 5 with variational distribution q(θ | v, η). The algorithm minimizes
the KL divergence between q and p by adjusting the variational parameters v. SVI-LDA has several
hyperparameters; four of them were varied during these experiments comprising three model-related
hyperparameters and one learning rate hyperparameter. Full details of hyperparameters, document,
and vocabulary selection are given in Appendix C.

Table 2 shows performance in log likelihood on the test data of the two approaches. B3O performs
significantly better than BO in this problem. To understand why, Figure 1 examines the error (negative
log liklihood) on both the validation and test data for all the hyperparameters selected during BO. In
the test scenario, BO chooses the hyperparameters corresponding to the left-most bar in Figure 1b
because those hyperparameters minimized error on the validation set. However, Figure 1b clearly
shows that other hyperparameter settings outperform this selection. For finite validation data, there
is no way of knowing how the optimal hyperparameter will behave on test data before seeing it,
motivating an averaging approach like B3O.

4 Related Work

Empirical Bayes has a long history started by Robbins (1955) with a nonparametric approach,
to parametric EB (Efron and Morris, 1972) and modern applications of EB (Snoek et al., 2012;
Rasmussen and Williams, 2006). Another use of the GP as a meta-model arises in Bayesian
quadrature, which uses GPs to approximately marginalize over model parameters θ (Osborne et al.,
2012). However, quadrature is computationally infeasible for hyperparameter marginalization because
p(X | η) is expensive to compute. Finally, B3O resembles ensemble methods, such as boosting and
bagging, because it is a weighted sum over posteriors. Boosting trains models on data reweighted
to emphasize errors from previous models (Freund et al., 1999) while bagging takes an average of
models trained on bootstrapped data (Breiman, 1996).

5 Conclusions and Future Work

In this paper I introduced the B3O, an extension to BO that approximately integrates over the unknown
hyperparameters of arbitrary machine learning algorithms. I applied the method to two algorithms
finding an improvement over BO. In future work, I will make comparisons on more algorithms and
larger-scale data. I will also investigate new hyperpriors p(η | λ) and other acquisition functions.
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A Algorithm for B3O

Data: Xtrain, Xvalidation

Result: posterior p(θ |Xtrain, Xvalid, λ̂) with optimal hyper-hyper-parameter λ̂
initialize validation error history V = {}
while V not converged do

approximate meta-model posterior GP(m,Σ | V )
sample error curve f (s) ∼ GP(m,Σ | V )
select hyperparameter η(s) := arg minη f(η)

calculate/approximate model posterior p(θ |Xtrain, η
(s))

evaluate model posterior v(s) :=
∫
p(Xvalid | θ)p(θ |Xtrain, η

(s))dθ

append performance to history V := V ∪ {(η(s),−v(s))}
end
find λ̂ using Eq. 5
approximate p(θ |Xtrain, Xvalid, λ̂) using Eq. 4

Algorithm 1: B3O
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B Approximation of Acquisition Probability

The expectation in Eq. 6 can be approximated by replacing the off-diagonal entries of the posterior
covariance matrix Σ with zero, which makes yj ⊥⊥ yi,∀j 6= i. The resulting expectation is identical
to the label probability in the multinomial probit (Girolami and Rogers, 2006),

p(y = i) = EN (u | 0,σ2
i )

∏
j 6=i

φ(u−mi +mj)

 , (7)

for posterior mean and variance (mj , σj) for dimension j.
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Figure 2: Scatter of approximate − log(y) against true − log(y) shows that the approximation works
well except for extreme values of y.

To explore the effectiveness of the approximation I used the hyperparameter and performance results
from the SVI-LDA detailed in Section 3.2. Figure 2 shows the approximated probability (Eq. 7) of
selecting hyperparameter η in the Thompson sampling acquisition method against the true probability
in Eq. 6 (evaluated using 100,000 samples per point). The approximation works well except for
extreme values of y. Intuitively, when function draws at point η are far away from the mean and
highly correlated with nearby points, they make the event of choosing η much more likely in the full
covariance normal than the diagonalized covariance normal distribution.

C Hyperparameter Settings for SVI-LDA

SVI-LDA has four variable hyperparameters in the experiments for Section 3.2:

• K, range [50, 200], the number of topics;
• α, loge range [−5, 0], the hyerparameter to the Dirichlet document-topic prior;
• η, loge range [−5, 0], the hyperparameter to the Dirichlet topic-word distribution prior;
• κ, range [0.5, 0.9], the decay parameter to the learning rate (t0 + t)−κ, where t0 was fixed

at 10 for this experiment.

Several other hyperparameters are required and were kept fixed during the experiment. The minibatch
size was fixed at 100 documents and the vocabulary was selected from the top 1,000 words, excluding
stop words, words that appear in over 95% of documents, and words that appear in only one document.
The 11,314 resulting documents were randomly split 80%-10%-10% into training, validation, and
test sets.
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