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Abstract

This short paper extends the free-energy derivations of variational inference, loopy
belief propagation and expectation propagation (EP) to a wider range of approxi-
mate inference methods including power EP, distributed EP, and black-box alpha-
divergence minimisation. The framework provides a very flexible framework for
the design of variational algorithms that can mix versions of any of the aforemen-
tioned algorithms inside a single coherent algorithm. The framework is general,
extending to latent variable models, for example.

1 Relaxations for Variational Free Energy

Consider approximating an intractable posterior p(θ|D) = 1
Z p0(θ)

∏N
n=1 p(xn|θ). Such posteriors

arise in many contexts e.g. density estimation and regression/classification (for supervised learning
the likelihood is replaced by p(yn|xn,θ)). In the following we use the short-hand fn(θ) = p(xn|θ)
for the likelihood functions. Variational inference (VI) [1, 2] employs KL-divergence minimisation
to obtain a tractable approximation q(θ) by

min
q

KL[q||p]⇔ min
q
FVFE(q) = Eq

[
log q(θ)− log p0(θ)−

N∑
n=1

log fn(θ)

]
. (1)

The RHS expression is called the variational free energy (VFE) [1, 2], defined on the set of valid
probability densities {q :

∫
q(θ)dθ = 1}. Minimising this free energy is equivalent to KL-divergence

minimisation as Z does not depend on θ and q. Crucially, it is a global optimisation objective
wrt. a single q distribution, hence we term it a global approximation method. On the other hand,
expectation propagation (EP) [3] is a local approximation method that can outperform VFE on a
variety of tasks, e.g. Gaussian Process classification [4] (although this issue is less clear cut for more
modern applications of VFE/EP). VI and EP are the most popular and foundational algorithms for
distributional approximate Bayesian inference.

A number of papers have considered the connections between VI and EP, e.g. see [5, 6]. We first
revisit these relationships again by a derivation that transforms the VFE into the Bethe free energy
[7, 8] and then to EP. This is done in sections 1.1 and 1.2 with a standard approach that includes,
1. argument decoupling, 2. constraint relaxation, and 3. dual form representation. In later sections
we extend this procedure to power EP and other modern variational models, and also to models that
contain latent variables. We further demonstrate the flexibility of this framework by showing how
it allows new variants to be derived that mix different VI and EP-like algorithms. A sketch of this
procedure is provided in the main text and the full derivations can be found in appendix.
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1.1 From VFE to Bethe Free Energy

First we make use of the additivity of logarithm to transform VFE optimisation into an equivalent
optimisation problem:

min
q,{p̃n}

(1−N)KL[q||p0]−
∑
n

Ep̃n
[
log

p0(θ)fn(θ)

p̃n(θ)

]
subject to p̃n = q,∀n. (2)

Full details can be found in appendix, eqns. (13) and (14). In summary we have rearranged terms
in the VFE and then decoupled the global q distributions into a set of local distribitions p̃n, which
are then tied together by introducing equality constraints. The first approximation can now be
made by relaxing the equality constraints to moment matching constraints Ep̃n [θk] = Eq[θk] for
k ∈ N, and a further crude relaxation suggests moment matching just for the first M moments1

Ep̃n [θm] = Eq[θm],m = 1, 2, ...,M . In the following we use a vectorial functionφ(θ) to summarise
these constraints as Ep̃n [φ] = Eq[φ], where as an example φ(θ) = [θ,θθT ] for Gaussian EP. In
general φ can contain any polynomial terms or other basis functions. This relaxation returns the
following constrained optimisation problem:

min
q,{p̃n}

FBethe({p̃n}, q) subject to Ep̃n [φ] = Eq[φ],∀n,

FBethe({p̃n}, q) = (1−N)KL[q||p0]−
∑
n

Ep̃n
[
log

p0(θ)fn(θ)

p̃n(θ)

]
.

(3)

FBethe({p̃n}, q) is the Bethe free energy [7, 8] that is usually presented in the context of probabilistic
graphical models. Below we show how to derive its dual form, which is usually discussed in EP
literature [9, 10, 11].

Remark. Minka [9] discussed (3) as a minimax problem (min{p̃n}maxq) instead, which we believe
is incorrect. First (3) relaxes the constraints in (2), meaning both should have the same optimisation
direction. Then since (2) just decouples VFE (1) with equality constraints, it will be a pure minimisa-
tion with the same stationary points. For graphical models the Bethe free energy optimisation problem
is formulated as a pure minimisation problem like above (3), e.g. in [6, 12] but also interestingly in
pages 3-4 of [9]. On the other hand, Minka’s derivation of the dual energy takes a different approach
and does not require the minimax assumption of the primal problem.

1.2 From Bethe to EP: a Dual Form Representation

We provide a derivation in a similar way as [12], starting from a note on the KL duality2

−KL[q||p0] = min
λq(θ)

−Eq[λq(θ)] + logEp0 [exp[λq(θ)]] . (4)

The RHS upper-bound to the KL term is in the same spirit as the variational lower-bound for logZ, in
that both employ convex duality. Equality is achieved by q(θ) ∝ p0(θ) exp[λq(θ)]. Substitution into
(3) then yields a transformed energy that we denoted as FBethe({p̃n}, q, λq(θ)) (see (16) in appendix).
Denote λ−n as the Lagrange multiplier for moment matching and ν, νn for the normalisation
constraints of q and p̃n, respectively. This returns the following Lagrangian

min
q,{p̃n},λq(θ)

max
{λ−n,νn,ν}

FBethe({p̃n}, q, λq(θ)) +
∑
n

λT−n(Eq[φ]− Ep̃n [φ]) + ... (5)

where we have omitted the terms associated with νn and ν for notational ease (see (17) in appendix).
Solving the fixed points for p̃n and νn returns p̃n(θ) = 1

Zn
p0(θ)fn(θ) exp

[
λT−nφ(θ)

]
, where

the normalising constant is Zn =
∫
p0(θ)fn(θ) exp

[
λT−nφ(θ)

]
dθ. Also it is straight-forward to

evaluate the fixed point condition for q: (N − 1)λq(θ) =
∑
n λ

T
−nφ(θ) + ν. We explicitly specify

λq(θ) = λ
T
q φ(θ)+

1
N−1ν w.l.o.g., so now the stationary condition changes to (N−1)λq =

∑
n λ−n.

Also as shown in appendix the constant ν can be dropped. Importantly, substituting p̃n back to (5)
and enforcing the fixed point condition for q yields the EP energy [9]:

min
λq

max
{λ−n}

(N − 1) logEp0
[
exp[λTq φ(θ)]

]
−
∑
n

logZn subject to (N − 1)λq =
∑
n

λ−n. (6)

1The zeroth moment matching constraint is replaced by the constraint that p̃n integrates to 1.
2We include this step in order to connect to the EP energy with optimisation arguments all in the dual space.
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Notice now the optimisation problem over q is dropped since (6) does not depend on it. To ob-
tain the approximate posterior back, we make use of the tightness of the KL duality, and define
q(θ) = 1

Zq
p0(θ) exp

[
λTq φ(θ)

]
with logZq = logEp0

[
exp[λTq φ(θ)]

]
. The expectation consistent

approximate inference (EC) algorithm [10] is a special case with p0(θ) ∝ 1 and N = 2.

Remark. In the EP literature p̃n(θ) is named the tilted distribution, and λ−n is the natural parameter
of the cavity distribution for factor fn. In practice (6) requires a double-loop algorithm to guarantee
convergence [13]. Instead EP [3] parametrises the (natural parameters of) local approximating factors
by λn = λq−λ−n, with the goal of exp[λTnφ(θ)] capturing the effect of fn(θ) on the exact posterior.
EP runs a fixed point iteration algorithm to find the stationary points for {λn}Nn=1. The constraint is
enforced by calculating λq =

∑
n λn and λ−n =

∑
m 6=n λm after each update.

1.3 From VFE to Power EP

We now extend the above approach to power EP [14] which is a new contribution, although fairly
straightforward. This procedure includes one modification to the Bethe free energy. Assume for each
factor fn a power value αn 6= 0 is associated, with α = (α1, ..., αN ) and

∑
n

1
αn
6= 1. Then the

Bethe free energy with moment matching constraints is modified to (see (21) in appendix):

Fα(q, {p̃n}) =

(
1−

∑
n

1

αn

)
KL[q||p0]−

N∑
n=1

1

αn
Ep̃n

[
log

p0(θ)fn(θ)
αn

p̃n(θ)

]
. (7)

Calculations following section 1.2 also reveal the change of the fixed point condition for q to
(
∑
n

1
αn
−1)λq =

∑
n

1
αn
λ−n. Define q as an exponential family distribution with natural parameter

λq as before, and λn = (λq − λ−n)/αn. We arrive at the power EP objective:(∑
n

1

αn
− 1

)
logZq −

∑
n

1

αn
log

∫
p0(θ)fn(θ)

αn exp
[
(λq − αnλn)Tφ(θ)

]
dθ. (8)

The iterative process also enforces λq =
∑
n λn. It is shown in [5] that (8) becomes an lower-bound

of − logZ when αn > 0 and
∑
n

1
αn

< 1. On the other hand, taking αn → 0,∀n recovers FVFE but
now the q distribution is restricted to have an exponential family form.

2 Further Constraint Relaxations by Weighted Averaging

In EP we needN Lagrange multipliers {λ−n} because of the individual moment matching constraints
Eq[φ] = Ep̃n [φ]. This translates into a large memory burden for large datasets and “big” models.
To solve this issue, we start from the re-formulated energy function (7), and then replace the N
equality constraints q = p̃n by a single one that we call weighted averaged moment matching:
Eq[φ] =

∑
n wnEp̃n [φ], with w = (w1, ..., wn) denote the weighing vector that sum to 1. The

motivation here is to reduce the number of Lagrange multipliers (thus saving memory) but to ensure
that q still resembles the tilted distributions. Empirical evaluations have shown that this relaxation
method returns state-of-the-art performance for some problems [15] even though it can be a very
poor approximation to retaining N equality constraints in (2).

We proceed to solve the corresponding constrained optimisation problem. We also apply the KL
duality (4) to (7) (but for simplicity now we directly use λTq φ(θ)), and denote the transformed energy
(in a similar way as before) as Fα({p̃n}, q,λq). Now we have the following Lagrangian

min
q,{p̃n},λq

max
λ,{νn},ν

Fα({p̃n}, q,λq) + λT (Eq[φ]−
∑
n

wnEp̃n [φ]) + ... (9)

This returns p̃n(θ) = 1
Zn
p0(θ)fn(θ)

αn exp
[
αnwnλ

Tφ(θ)
]
, but the fixed point condition for q

becomes
(∑

n
1
αn
− 1
)
λq = λ, indicating λ as a function of λq. Thus we can directly obtain a

single-loop algorithm for the following minimisation

min
λq

(∑
n

1

αn
− 1

)
logZq −

∑
n

1

αn
log

∫
p0(θ)fn(θ)

αn exp [βnλqφ(θ)] dθ (10)
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with βn =
(∑

m
1
αm
− 1
)
αnwn. Black-box alpha (BB-α) [15] is recovered by a special case of

the above via defining αn = α,∀n and wn = ( 1
αn
− 1

N )/(
∑
m

1
αm
− 1) = 1/N , which leads to

βn = 1− α/N . In this case the weighing vector w is implicitly defined by the choice of αn.

Remark. The original derivation of BB-α in [15] was ad hoc starting from the power EP energy (8)
and then tying the local parameters λn. The derivation here provides a rigorous justification from a
constrained primal energy optimisation perspective.

3 Distributed Variational Methods

Variational methods have been shown to be very efficient for distributed computing, e.g. see
[16, 17, 18] for EP and [19] for VFE. In the new set-up this is equivalent to employing different
decoupling strategies. One way to see this is to first group the factors into K subset-level factors
Fk =

∏
fnk

with the corresponding index sets Nk = {nk}, where usually Ni ∩Nj = ∅, i 6= j and
∪kNk = {1, ..., N}. Now we perform EP at the group level. Precisely, we rewrite the variational
free energy (1) and also assume for simplicity αk 6= 0 and αnk

= αk for nk ∈ Nk:

FVFE(q) =

(
1−

∑
k

1

αk

)
KL[q||p0]−

∑
k

1

αk
Eq
[
log

p0(θ)Fk(θ)
αk

q(θ)

]
. (11)

One can easily recover the distributed EP objective by repeating the decoupling and Lagrangian
computation procedures as in section 1.1 and 1.2, with the moment-matching constraints applied to
p̃k for subset-level factor Fk rather than individual factor fn. An equivalent derivation starts from
power EP in section 1.3 but with an extra set of constraints restricting p̃i = p̃j ,∀i, j ∈ Nk. Simple
calculations reveal that in this case 1/αk in (11) equals to the sum of 1/αnk

for all nk ∈ Nk.

Monte Carlo (MC) methods have been employed to compute these moments since now we incorporate
multiple factors (data points) in the second integral. The EP/MC mixed approach combines the
advantages from both world: it provides more accurate approximations than full EP since it is less
“local”, while it remains faster than full MC methods (as the tilted distribution contains less complex
factors) and is straight-forward to parallelise. In the extreme case with K = 1 and α 6= 0, 1, the
above derivation recovers the variational Rényi bound [20], with the q distribution restricted to
exponential families. Rényi divergences [21] have been adopted in [20] to allow extensions to all
valid q distributions, and a connection to BB-α was also derived.

We further present a mixed approach that nests BB-α in distributed EP, and again for simplicity we
assume αnk

= αk for nk ∈ Nk. We still decouple all the q distributions associated with factor f̃n to
p̃n as in (7), but then relax the equality constraints to 1

|Nk|
∑
nk∈Nk

Ep̃nk
[φ] = Eq[φ], ∀k. Solving

the Lagrangian and defining λq =
∑
k λk returns the following dual energy:

(
∑
k

|Nk|
αk
− 1) logZq −

∑
k

1

αk

∑
nk∈Nk

log

∫
p0(θ)fnk

(θ)αk exp

[
(λq −

αk
|Nk|

λk)
Tφ(θ)

]
dθ,

This means the local parameters λk are updated in a BB-α fashion, while the final approximation q is
constructed in an EP way. Potentially this approach can both reduce the approximation bias of BB-α
(since more than 1 local parameter is in use) as well as being computationally faster than distributed
EP (as often now the moments for the tilted distribution become tractable).

4 Discussion

We have presented a principled way to construct a number of approximate inference algorithms,
by manipulating the variational free energy though likelihood grouping, argument decoupling, and
constraint relaxation steps. The algorithms discussed so far are not directly applicable to latent
variable models, but they can be extended to do so as described appendix B. Gaussian EP can be
viewed as a continuous version of belief propagation (BP) [22, 23], and we have also shown an
equivalent Bethe free energy definition (3) for posterior approximation. Theoretical properties of
BP and Bethe free energy have been (and continue to be) extensively studied (e.g. see [6]), however
much less existing work has analysed the convergence and energy approximation accuracy of EP.
Future work will focus on these theoretical issues connecting to the rich literature of variational
inference, message passing and constrained optimisation.
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A Derivations for Free-Energy Relaxations

In this section a full detailed derivation of sections 1.1 and 1.2 in the main text is provided.

To start with, the KL-divergence is defined as

KL[q(θ)||p0(θ)] =
∫
q(θ) log

q(θ)

p0(θ)
dθ. (12)

A.1 From VFE to Bethe Free Energy: Derivations

First we make use of the additivity of logarithm to rewrite the VFE as

FVFE(q) = Eq

[
log q(θ)− log p0(θ)−

∑
n

log fn(θ)

]

= Eq

[
log

q(θ)

p0(θ)
−N log

q(θ)p0(θ)

p0(θ)q(θ)
−
∑
n

log fn(θ)

]

= (1−N)KL[q||p0]−
∑
n

Eq
[
log

p0(θ)fn(θ)

q(θ)

]
.

(13)

Note here the energy is represented by a collection of “local VFE” (the second term in the last line). An
equivalent optimisation problem decouples those local variational problems, but to obtain the same solution a
set of equality constraints is imposed:

min
q,{p̃n}

(1−N)KL[q||p0]−
∑
n

Ep̃n
[
log

p0(θ)fn(θ)

p̃n(θ)

]
subject to p̃n = q,∀n. (14)

The equality constraints are equivalent to constraining the moment generating function of p̃n, denoted as
Mp̃n(t) = Ep̃n [et

T θ], to be equal to Mq(t)
3. As stated in the main text, these can be relaxed to matching all

the moments Ep̃n [θm] = Eq[θm] for m ∈ N, and under some smoothness assumption for q, matching all the
moments is equivalent to equality constraints. A further crude relaxation suggests moment matching just for a
vectorial function φ(θ), i.e. Ep̃n [φ] = Eq[φ]. After relaxation we arrive at the Bethe free energy presented in
the main text.

A.2 From Bethe to EP: a Dual Form Representation: Derivations

We first provide a note on the derivation of KL duality. Since KL[q||p0] is convex in q, a dual form representation
of KL goes to

KL[q||p0] = max
λq(θ)
〈λq(θ), q〉 −A(q), (15)

where λq(θ) is some arbitrary functional, A(q) represent the dual of KL satistfying KL[q||p0] = A∗(q). In
the space of distributions the inner product 〈λq(θ), q〉 is defined as the integral

∫
q(θ)λq(θ)dθ = Eq[λq(θ)].

Some calculations also reveal that A∗(q) = logEp0 [exp[λq(θ)]]. Combining all these results returns the KL
duality stated in the main text. The equality is achieved when q(θ) ∝ p0(θ) exp[λq(θ)].

Substitution of the KL duality into (3) yields the transformed energy

FBethe({p̃n}, q, λq(θ)) = (1−N)Eq[λq(θ)] + (N − 1) logEp0 [exp[λq(θ)]]−
∑
n

Ep̃n
[
log

p0(θ)fn(θ)

p̃n(θ)

]
.

(16)
Denote λ−n as the Lagrange multiplier for moment matching and ν, νn for the normalisation constraints of q
and p̃n, respectively. This returns the following Lagrangian

min
q,{p̃n},λq(θ)

max
{λ−n,νn,ν}

FBethe({p̃n}, q, λq(θ)) +
∑
n

λT−n(Eq[φ]− Ep̃n [φ])

+
∑
n

νn

(∫
p̃n(θ)dθ − 1

)
+ ν

(∫
q(θ)dθ − 1

)
.

(17)

We first compute the fixed points for p̃n and νn, which returns

p̃n(θ) =
1

Zn
p0(θ)fn(θ) exp

[
λT−nφ(θ)

]
, logZn = 1 + νn.

3Technically speaking q = p̃n up to zero measure.
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Also Zn serves as the normalising constant of p̃n, meaning

Zn =

∫
p0(θ)fn(θ) exp

[
λT−nφ(θ)

]
dθ.

Then we evaluate the fixed point condition for q, returning

(N − 1)λq(θ) =
∑
n

λT−nφ(θ) + ν.

Substituting p̃n, νn back into (17) and enforcing the above condition, the Lagrangian changes to

min
q,λq(θ)

max
{λ−n,ν}

(N−1) logEp0 [exp[λq(θ)]]−
∑
n

logZn−ν subject to(N−1)λq(θ) =
∑
n

λT−nφ(θ)+ν.

(18)
Now the above function does not depend on q, so the optimisation problem of q can be eliminated. We further
assume λq(θ) = λTq φ(θ) +

1
N−1

ν w.l.o.g. so that the constraint changes to (N − 1)λq =
∑
n λ−n. Using

this new definition, logEp0 [exp[λq(θ)]] = logEp0
[
exp[λTq φ(θ)]

]
+ 1

N−1
ν, which means the Lagrangian

now is independent with ν as well, so that we can drop the optimisation problem of it. With all these set-ups we
arrive at the EP energy

min
λq

max
{λ−n}

(N − 1) logEp0
[
exp[λTq φ(θ)]

]
−
∑
n

logZn subject to (N − 1)λq =
∑
n

λ−n. (19)

Finally to obtain the approximate posterior from this dual energy optimisation, we make use of the tightness of
the KL duality, and define

q(θ) =
1

Zq
p0(θ) exp

[
λTq φ(θ)

]
, logZq = logEp0

[
exp[λTq φ(θ)]

]
. (20)

This means by constraint relaxations, we implicitely defined the approximate posterior q to have an exponential
family form, with the sufficient statistic φ(θ) defined by the selection of moments.

A.3 From VFE to Power EP: Derivations

The modified energy function also comes from rearranging terms in VFE:

FVFE(q) = Eq

[
log q(θ)− log p0(θ)−

∑
n

log fn(θ)

]

= Eq

[
log

q(θ)

p0(θ)
−

(∑
n

1

αn

)
log

q(θ)p0(θ)

p0(θ)q(θ)
−
∑
n

log (fn(θ)
αn)1/αn

]

=

(
1−

∑
n

1

αn

)
KL[q||p0]−

∑
n

1

αn
Eq
[
log

p0(θ)fn(θ)
αn

q(θ)

]
.

(21)

Decoupling to p̃n and relaxing the equality constraints to moment maching returns the energy function
Fα(q, {p̃n}) (and thus power) EP in the main text. With the KL duality and all the Lagrange multipliers
defined accordingly, the Lagrangian becomes

min
q,{p̃n},λq(θ)

max
{λ−n,νn,ν}

Fα({p̃n}, q, λq(θ)) +
∑
n

1

αn
λT−n(Eq[φ]− Ep̃n [φ])

+
∑
n

νn

(∫
p̃n(θ)dθ − 1

)
+ ν

(∫
q(θ)dθ − 1

)
,

(22)

and here we scale the multipliers λ−n with 1/αn just to follow the conventions of power EP.

B Mixing Variational Methods for Latent Variable Models

The algorithms we discussed in the main text are not directly applicable to latent variable models, and in this
appendix we provide several EP-like recipes for them. As we shall see again, different decoupling and constraint
relaxation strategy returns algorithms that have different global and local behaviour.

Assume now the exact posterior becomes p(θ, {zn}|{xn}) ∝ p0(θ)
∏
n p0(zn)p(xn|zn,θ). We note that

the algorithms discussed below also applies to models that has intermediate-level variables, i.e. those latent
variables that are attached to a subset of data. The goal is to approximate the exact posterior of both θ and zn,
and we assume factorised approximation q(θ, {zn}) = q(θ)

∏
n q(zn|xn). Note that in VI/VB literature the

local variational approximation is often denoted as q(zn). However as at optimum q(zn) depends on xn, here
we explicitly write down this dependence as q(zn|xn). This notation is also convenient for amortised inference
[24, 25, 26] which uses a recognition model (i.e. sharing parameters between q(zn)) to parameterise the local
variational distribution.
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B.1 Full Power EP/BB-α Treatment

We repeat the term rearranging and argument decoupling procedure as in (7). This returns:

Fα(q, {p̃n}) =

(
1−

∑
n

1

αn

)
KL[q(θ)||p0(θ)] +

∑
n

(
1− 1

αn

)
KL[q(zn|xn)||p0(zn)]

−
∑
n

1

αn
Ep̃n

[
log

p0(θ)p0(zn)p(xn|zn,θ)αn

p̃n(θ,zn)

]
,

(23)
subject to p̃n(θ,zn) = q(θ)q(zn|xn),∀n. The next step is to relax the equality constraint to moment-matching
constraints denoted as Ep̃n [Φ(θ,zn)] = Eq[Φ(θ,zn)]. The choice of the sufficient statistic Φ also plays an
important role here, and for simplicity we omit the dependence to the observations xn, and assume a factorised
sufficient statistic, i.e. Φ(θ,zn) = [φ(θ),ψ(zn)]. We leave the general case to future work.

Now we proceed to solve the fixed points using similar methods presented in the main text. We still use the KL
duality (4) for q(θ), and write that for the latent variables as

−KL[q(zn|xn)||p0(zn)] = min
η(zn,xn)

−Eq[η(zn,xn)] + logEp0 [exp[η(zn,xn)]] . (24)

To simplify computations we assume η(zn,xn) = η(xn)
Tψ(zn) w.l.o.g. Substitution into (23) returns the

modified form Fα(q, {p̃n},λq, {η(xn)}) which is defined in a similar way as (16). Associating Lagrange
multiplier λ−n and ηn for the moment matching constraints of φ and ψ respectively (and also those for
normalisation), we have the following Lagrangian

Fα(q, {p̃n},λq, {η(xn)}) +
∑
n

1

αn

[
λT−n(Eq[φ]− Ep̃n [φ]) + η

T
n (Eq[ψ]− Ep̃n [ψ])

]
+ ... (25)

where we have omitted the multipliers for the normalisation constraints. Finding the fixed point wrt. p̃n returns
the following tilted distribution:

p̃n(θ,zn) =
1

Zn
p0(θ)p0(zn)p(xn|zn,θ)αn exp

[
λT−nφ(θ) + η

T
nψ(zn)

]
. (26)

Also zeroing the gradient wrt. q yields the fixed point conditions (up to a constant)
(∑

n
1
αn
− 1
)
λq =∑

n
1
αn
λ−n just like in power EP and (1− αn)η(xn) = ηn. The second one is similar to the BB-α case so

we directly assume it holds and drop the optimisation problem of ηn. Furthermore, substituting p̃n back into
(25) and zeroing the gradient wrt. q, we arrive at the following power EP energy

(
∑
n

1

αn
− 1) log

∫
p0(θ) exp

[
λTq φ(θ)

]
dθ +

∑
n

(
1

αn
− 1) log

∫
p0(zn) exp

[
η(xn)

Tψ(zn)
]
dzn

−
∑
n

1

αn
log

∫
p0(θ)p0(zn)p(xn|zn,θ)αn exp

[
λT−nφ(θ) + (1− αn)η(xn)Tψ(zn)

]
dθdzn

subject to (
∑
n

1

αn
− 1)λq =

∑
n

1

αn
λ−n.

(27)
To make the KL duality tight we define the approximation q obtained from the dual energy optimisation as

q(θ) =
1

Zq
p0(θ) exp

[
λTq φ(θ)

]
, q(zn|xn) =

1

Zq(xn)
p0(zn) exp

[
η(xn)

Tψ(zn)
]
.

We also present a much cleaner version of the energy function by substituting the q distributions into the power
EP energy (with a further definition λn = 1

αn
(λq − λ−n)) and rearranging terms:

− log

∫
p0(θ) exp

[
λTq φ(θ)

]
dθ −

∑
n

1

αn
logEq(θ)q(zn|xn)

[(
p0(zn)p(xn|zn,θ)

q(zn|xn) exp [λTnφ(θ)]

)αn
]

subject to λq =
∑
n

λn.
(28)

This term rearranging proce The BB-α variant can be derived similarly by further constraint relaxation. The
detailed derivation is omitted here, but in summary we keep the constraint for ψ but modify the other constraint
by Eq(θ)[φ] = 1

N

∑
n Ep̃n [φ]. One can show that the dual energy becomes (again after rearranging terms)

−
∑
n

1

α
logEq(θ)q(zn|xn)

[(
p0(θ)

1
N p0(zn)p(xn|zn,θ)
q(θ)

1
N q(zn|xn)

)α]
, (29)

with q(θ) and q(zn|xn) defined as exponential family distributions. Extensions to general q distributions can
be justified using Rényi divergences minimisation methods [20].
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B.2 Nesting Power-EP/BB-α in VI

This section discusses how to use power EP/BB-α as an inner loop computation for variational inference. It
starts from (23), but only applies constraint relaxations to the moments for the latent variables. In other words,
now the constraints are Eq[ψ(zn)] = Ep̃n [ψ(zn)] and q(θ) = p̃n(θ). For computational convenience we
assume p̃n(θ,zn) = q(θ)p̃n(zn|θ) w.l.o.g. so that there is only one set of constraints Eq(zn|xn)[ψ(zn)] =
Eq(θ)p̃n(zn|θ)[ψ(zn)] (besides the normalisation ones). Denote ηn as the associated Lagrange multipliers for
the moment maching constraints, then solving the corresponding Lagrangian yields (1−αn)η(xn) = ηn again,
and

p̃n(zn|θ) =
1

Zn(xn,θ)
p0(zn)p(xn|zn,θ)αn exp

[
(1− αn)η(xn)Tψ(zn)

]
. (30)

Note that now the normalising constantZn(xn,θ) is also a function of θ. We still keep the free-form optimisation
for q(θ). Substitution of p̃n(zn|θ) into the Lagrangian returns a “mixed form” of energy (again after rearranging
terms)

min
q

KL[q(θ)||p0(θ)]−
∑
n

Eq(θ)
[

1

αn
logEq(zn|xn)

[(
p0(zn)p(xn|zn,θ)

q(zn|xn)

)αn
]]
, (31)

where q(zn|xn) is restricted to have an exponential family form q(zn|xn) ∝ p0(zn) exp
[
η(xn)

Tψ(zn)
]
.

Remark. A naive change of the constraints to Eq[φ(θ)] = Ep̃n [φ(θ)] and q(zn|xn) = p̃n(zn) does not lead
to a nested approach of VI in Power-EP/BB-α. We omit the details here, but a try-out for the BB-α variant
returns the following energy

min
q

∑
n

KL[q(zn|xn)||p0(zn)]−
∑
n

1

α
Eq(zn|xn) logEq(θ)

[(
p0(θ)

1/Np(xn|zn,θ)
q(θ)1/N

)α]
, (32)

with q(θ) also restricted as an exponential family distribution.

B.3 Nesting VI in Power-EP/BB-α

Recall in the beginning we mentioned that the decoupling process plays a crucial role on the dual form of the
energy. Now we decouple the variational distributions in a different way:

Fα(q, {p̃n}) =

(
1−

∑
n

1

αn

)
KL[q(θ)||p0(θ)]−

∑
n

1

αn
Ep̃n(θ)q(zn|xn)

[
log

p0(θ)p0(zn)
αnp(xn|zn,θ)αn

p̃n(θ)q(zn|xn)αn

]
,

(33)

In this case we only relax the constraints for latent variable posterior approximations to p̃n(θ) to moment
matching: Eq[φ] = Ep̃n [φ]. We also reuse the derivations in section 1.3 of the main text by noticing now

log fn(θ) = Eq(zn|xn)

[
log

p0(zn)p(xn|zn,θ)
q(zn|xn)

]
, (34)

and thus omit the detailed expression of the energy functions. Readers are referred to (8) in the main text.
This algorithm (with the power EP variant) returns the same stationary points as VI if the model is conjugate,
i.e. log p(xn|zn,θ) is linear in φ(θ).

B.4 Variational Message Passing between Tilted Distributions

Applying similar derivation as in B.3 to the decoupling 23 returns a slightly different algorithm that applies
variational message passing (VMP) [27] to the tilted distributions. Here we also directly enforce the factorisation
assumption, i.e. p̃(θ,zn) = p̃n(θ)p̃n(zn) subject to p̃n(θ) = q(θ) and p̃n(zn) = q(zn|xn). This returns
the same fixed point as with the joint tilted distribution version if we optimise the free energy under equality
constraints. However the stationary points differs from those derived above when relaxing the constraint to
moment matching. This is because, as p̃ factorises, the fixed point solution of the Lagrangian should contain
“messages” sent between p̃n(θ) and p̃(zn). To be precise, we solve the fixed point of the Lagrangian (25) (but
with factorised p̃). The fixed point conditions for q remain the same, but those for p̃ become

p̃n(θ) =
1

Zn
p0(θ) exp

[
λT−nφ(θ) + αnEp̃(zn)[log p(xn|zn,θ)]

]
, (35)

p̃n(zn) =
1

Zn(xn)
p0(zn) exp

[
ηTnψ(zn) + αnEp̃n(θ)[log p(xn|zn,θ)]

]
. (36)
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Substituting these new fixed point equations back to the Lagrangian returns a different dual energy function

(
∑
n

1

αn
− 1) logZq +

∑
n

(
1

αn
− 1) logZq(xn)−

∑
n

1

αn
(logZn + logZn(xn))

+
∑
n

Ep̃n(θ)p̃n(zn) [log p(xn|zn,θ)]

subject to (
∑
n

1

αn
− 1)λq =

∑
n

1

αn
λ−n.

(37)

The BB-α version can also be derived similarly which we omit here.

The proposed algorithm can be extended to αn = 1, which returns the results in section B.3 and subject to the
discussions there. Otherwise the algorithm behaves differently since 1) the local messages are computed using
the tilted distributions and 2) for non-conjugate models the tilted distributions contain more complex structure
compared to q. In below we provide a fixed point iteration procedure to find the stationary distributions.

1 Select a datapoint xn;

2 Compute cavity distribution q−n(θ) (either using power EP or BB-α);

3 Compute cavity distribution q−1(zn) when αn 6= 1, otherwise q−1(zn) = p0(zn);

4 Run VMP/VI on this single datapoint xn with prior terms changed to q−n(θ) and q−1(zn). This
procedure calculates p̃n(θ) and p̃(zn);

5 Compute the moment matching update qnew(θ)→ proj[p̃n(θ)];

6 Compute the final update for q with qnew (either using power EP or BB-α).

C A Note on the Decoupling Procedure

In the derivations so far, each likelihood term p(xn|θ) (or p(zn|xn,θ)) is associated to only one tilted
distribution p̃n. This is not necessary, and in general log p(xn|θ) can be split in any arbitrary way. In other
words, the decoupling procedure depends on the way a factor graph is defined, which in general can be specified
in any arbitrary way (as long as the function represented by that factor graph remains unchanged). For example,
in distributed variational methods we assumed the subsets are disjoint to each other, i.e. Ni ∩Nj = ∅. A relaxed
form for this assumption would associate a vector µk = (µk1, µk2, ..., µkN ) to each of the K groups (recall N
is the total number of datapoints), where the subset-level factor Fk is constructed as logFk =

∑
n µkn log fn.

The set of these vectors {µk} should satisfy
∑
k µkn = 1, ∀n.
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