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BOTTLENECK OF MODELLING

complicated data powerful modelsbottleneck:
inference

We would like to overcome the bottleneck but still get fast inference!

DEFINITION OF WVA
Given the exact posterior p(z|x), we want to construct a
wild variational approximation q(z|x) such that:

• It is fitted to the p(z|x) using an optimisation-based method;

• Inference with q(z|x) is comparatively easier:

– for the function F (z) in interest, it is easier to compute
(or estimate with MC methods) Eq(z|x)[F (z)]
than Ep(z|x)[F (z)];

• Its density is intractable, or difficult to compute in a fast way.

HOW DO WE FIT A WVA?
(Should use different approximation method for different q!)
Idea 1: Energy Approximation (e.g. for VFE)

• Approximate log q or H[q] (e.g. using density estimation);

• Approximate KL[q||p0] with density ratio estimation;

• Might require solving a minimax optimisation problem!

Idea 2: Direct Gradient Approximation

• Directly fit a model to the gradient by optimisation;

• Example: using Kernel Ridge regression (Sasaki et al. 2015)

• Use Stein’s Identity?

Idea 3: Other Objective Functions

• Stein Discrepancy: with Ep(z|x)[(T g)(z)] = 0 for g ∈ G,

min
q
S[q||p] = min

q
sup
g∈G

Eq(z|x)[(T g)(z)].

• Example: (T g)(z) = ∇z log p(x, z)Tg(z) +∇T
zg(z);

• OPVI (Ranganath et al. 2016) uses parametric test functions
G = {gη(z)}; (inefficient: it uses Hessian info for update)

• Avoid minimax problems: use kernels;

• Other objective function choices, e.g. MMD?

Idea 4: Amortize Stochastic Dynamics

• Sample z ∼ q(z|x);
• Compute z′ by running T -step stochastic dynamics;

• Update φ← φ+ (z′ − z)T∇φf ;
(one step gradient descent with L2 measure ||z′ − z||22)

• Already applied to energy-based models (Wang and Liu 2016);

• Can use other measures to chain the gradients.

A ZOO OF INFERENCE ENGINES
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EXAMPLE: MIXTURE OF GAUSSIANS

GAN-KL entropy grad approx amotized SVGD

• True density: p(z) = 0.5N (z;−3, 1) + 0.5N (z; 3, 1);

• Approximation q is specified by the following procedure:
εi ∼ N (0, 1), z = (ε3 ≥ 0)R(ε1;φ1)− (ε3 ≤ 0)R(ε2;φ2),
with R(ε;φ) defined by a one-hidden layer NN;

• GAN-KL: we discriminate between samples from q(z) and
p̃(z) = N (z; 0, 2) (using f -GAN (Nowozin et al. 2016) objective);

• Entropy Grad Approx: ∇φH[q] ≈ ∇φz(K + ηI)−1∇zK

EXAMPLE: GENERATIVE MODELLING
• Goal: compare with the benchmark (Gaussian VAE):

in this case the density of q is tractable, but
we will test methods which do not require log q.

• Model: 2-hidden layer MLP (500 units), latent dimension 20;

• WVA: NN with input size Din + 100 (same hidden layers);

• All used K = 50 samples during training;

Gaussian+VAE NN+SVGD
Dataset Gaussian+VAE Gaussian+SVGD NN+SVGD
Caltech 101 -123.50 -134.03 -129.27
MNIST -89.95 -106.40 -92.14

FUTURE WORK
• Visualise more toy examples;

• Test the GAN-KL type method on (deep) generative models;

• Develop amortized MCMC methods;
(currently testing SGLD + rejection step)

• How to improve sample efficiency?
(You can train a Gaussian VAE with only one sample!)


