

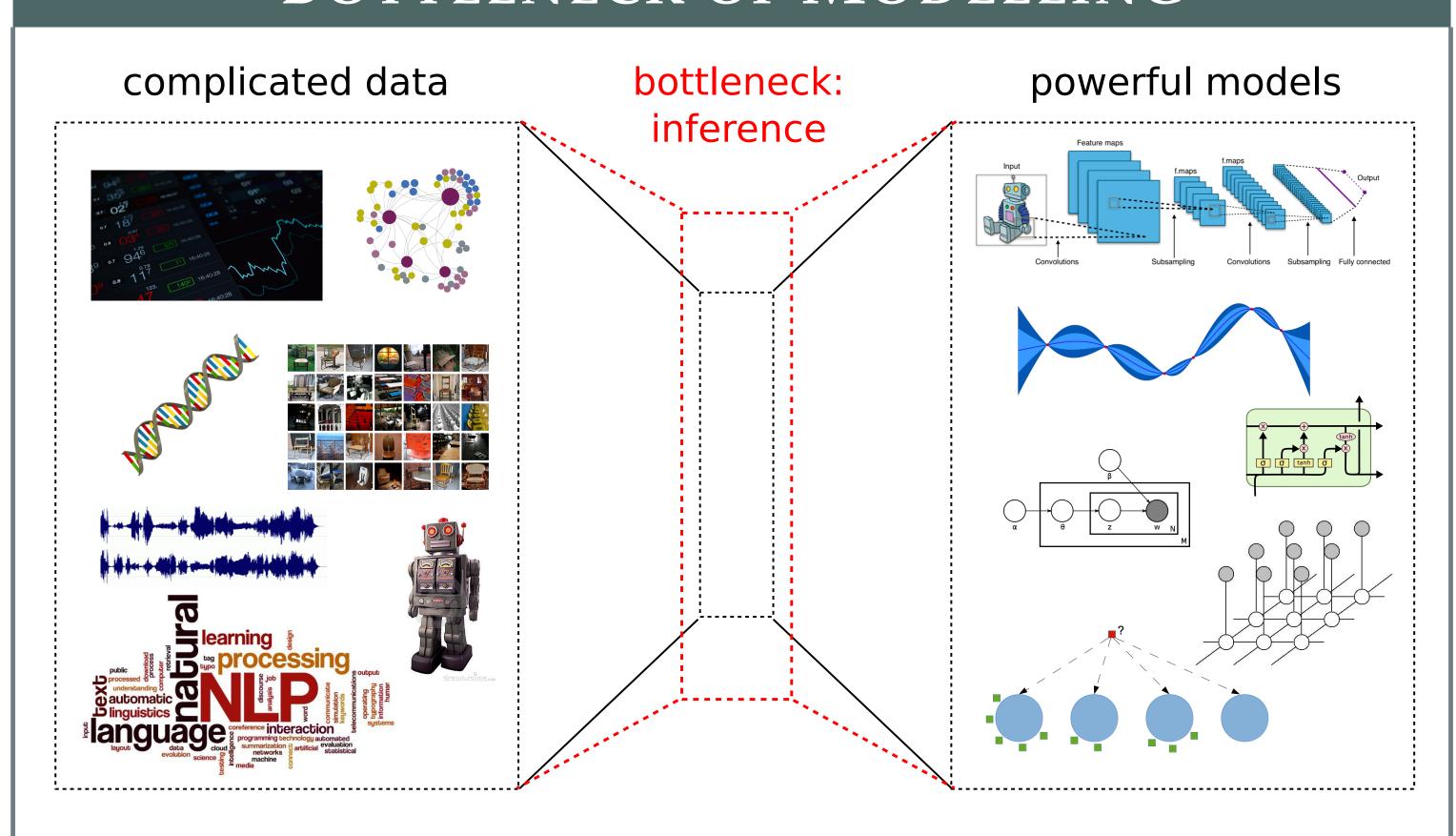
WILD VARIATIONAL APPROXIMATIONS

YINGZHEN LI¹ AND QIANG LIU²

¹UNIVERSITY OF CAMBRIDGE ²DARTMOUTH COLLEGE

easy

BOTTLENECK OF MODELLING



We would like to overcome the bottleneck but still get fast inference!

A ZOO OF INFERENCE ENGINES analytical solution MC objective auxiliary objective stochastic dynamics

VAE invertible transform

conjugate models

MEVI dropout

SVGD

tractable density intractable

DEFINITION OF WVA

Given the exact posterior p(z|x), we want to construct a wild variational approximation q(z|x) such that:

- It is fitted to the p(z|x) using an optimisation-based method;
- Inference with $q(\boldsymbol{z}|\boldsymbol{x})$ is comparatively easier:
 - for the function F(z) in interest, it is easier to compute (or estimate with MC methods) $\mathbb{E}_{q(z|x)}[F(z)]$ than $\mathbb{E}_{p(z|x)}[F(z)]$;
- Its density is intractable, or difficult to compute in a fast way.

HOW DO WE FIT A WVA?

(Should use different approximation method for different q!)

Idea 1: Energy Approximation (e.g. for VFE)

- Approximate $\log q$ or $\mathbb{H}[q]$ (e.g. using density estimation);
- Approximate $KL[q||p_0]$ with density ratio estimation;
- Might require solving a minimax optimisation problem!

Idea 2: Direct Gradient Approximation

- Directly fit a model to the gradient by optimisation;
- Example: using Kernel Ridge regression (Sasaki et al. 2015)
- Use Stein's Identity?

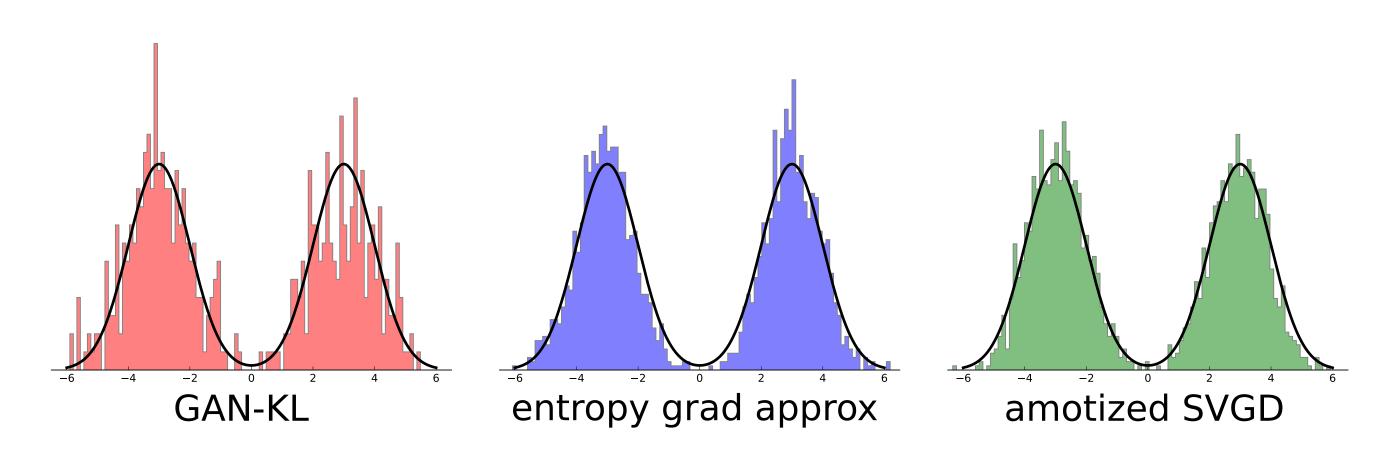
Idea 3: Other Objective Functions

- Stein Discrepancy: with $\mathbb{E}_{p(\boldsymbol{z}|\boldsymbol{x})}[(\mathcal{T}\boldsymbol{g})(\boldsymbol{z})] = 0$ for $\boldsymbol{g} \in \mathcal{G}$, $\min_{q} \mathcal{S}[q||p] = \min_{q} \sup_{\boldsymbol{g} \in \mathcal{G}} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})}[(\mathcal{T}\boldsymbol{g})(\boldsymbol{z})].$
- Example: $(\mathcal{T}g)(\boldsymbol{z}) = \nabla_{\boldsymbol{z}} \log p(\boldsymbol{x}, \boldsymbol{z})^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{z}) + \nabla_{\boldsymbol{z}}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{z});$
- OPVI (Ranganath et al. 2016) uses parametric test functions $\mathcal{G}=\{g_{\eta}(z)\}$; (inefficient: it uses Hessian info for update)
- Avoid minimax problems: use kernels;
- Other objective function choices, e.g. MMD?

Idea 4: Amortize Stochastic Dynamics

- Sample $z \sim q(z|x)$;
- Compute z' by running T-step stochastic dynamics;
- Update $\phi \leftarrow \phi + (z'-z)^T \nabla_{\phi} f$; (one step gradient descent with L_2 measure $||z'-z||_2^2$)
- Already applied to energy-based models (Wang and Liu 2016);
- Can use other measures to chain the gradients.

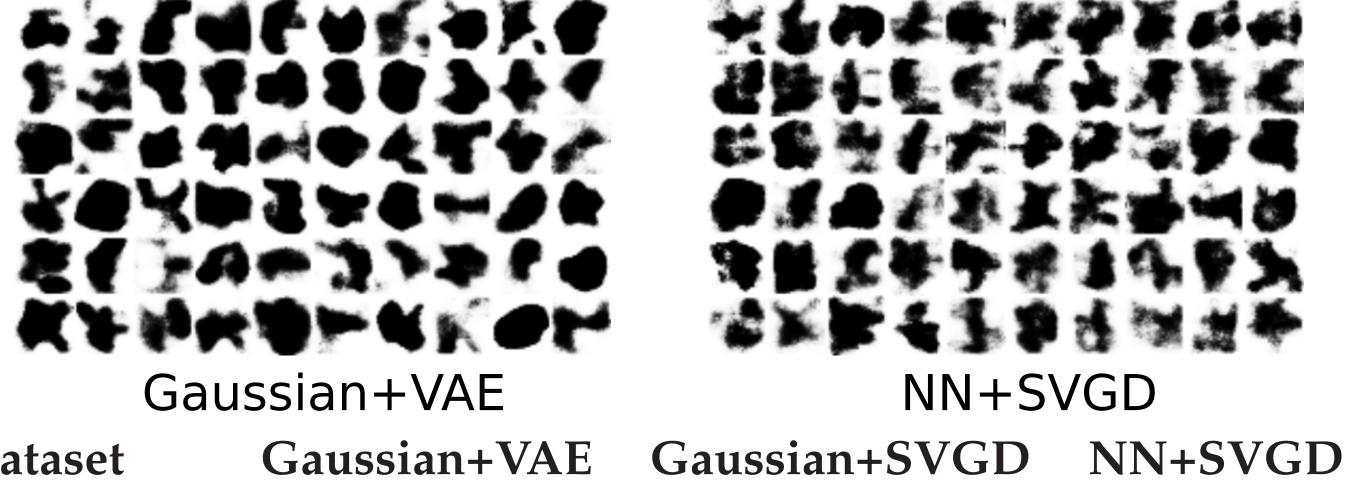
EXAMPLE: MIXTURE OF GAUSSIANS



- True density: $p(z) = 0.5\mathcal{N}(z; -3, 1) + 0.5\mathcal{N}(z; 3, 1);$
- Approximation q is specified by the following procedure: $\epsilon_i \sim \mathcal{N}(0,1), z = (\epsilon_3 \geq 0)R(\epsilon_1; \phi_1) (\epsilon_3 \leq 0)R(\epsilon_2; \phi_2),$ with $R(\epsilon; \phi)$ defined by a one-hidden layer NN;
- GAN-KL: we discriminate between samples from q(z) and $\tilde{p}(z) = \mathcal{N}(z; 0, 2)$ (using f-GAN (Nowozin et al. 2016) objective);
- Entropy Grad Approx: $\nabla_{\boldsymbol{\phi}} \mathbb{H}[q] \approx \nabla_{\boldsymbol{\phi}} \boldsymbol{z} (\boldsymbol{K} + \eta \boldsymbol{I})^{-1} \nabla_{z} \boldsymbol{K}$

EXAMPLE: GENERATIVE MODELLING

- Goal: compare with the benchmark (Gaussian VAE): in this case the density of q is tractable, but we will test methods which do not require $\log q$.
- Model: 2-hidden layer MLP (500 units), latent dimension 20;
- WVA: NN with input size $D_{in} + 100$ (same hidden layers);
- All used K = 50 samples during training;



Dataset	Gaussian+VAE	Gaussian+SVGD	NN+SVGD
Caltech 101	-123.50	-134.03	-129.27
MNIST	-89.95	-106.40	-92.14

FUTURE WORK

- Visualise more toy examples;
- Test the GAN-KL type method on (deep) generative models;
- Develop amortized MCMC methods;
 (currently testing SGLD + rejection step)
- How to improve sample efficiency? (You can train a Gaussian VAE with only one sample!)