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We would like to overcome the bottleneck but still get fast inference!

DEFINITION OF WVA

Given the exact posterior p(z|x), we want to construct a
wild variational approximation q(z|x) such that:

o Itis fitted to the p(z|x) using an optimisation-based method;
o Inference with q(z|x) is comparatively easier:

— for the function F'(z) in interest, it is easier to compute
(or estimate with MC methods) E (. |z)[£'(2)]
than £, (2) [ F'(2)];

e Its density is intractable, or difficult to compute in a fast way.

HOW DO WE FIT A WVA?

(Should use ditferent approximation method for ditferent g!)

Idea 1: Energy Approximation (e.g. for VFE)

e Approximate log g or H|q| (e.g. using density estimation);
e Approximate KL|q||po] with density ratio estimation;

e Might require solving a minimax optimisation problem!
Idea 2: Direct Gradient Approximation

o Directly fit a model to the gradient by optimisation;
e Example: using Kernel Ridge regression (Sasaki et al. 2015)
o Use Stein’s Identity?

Idea 3: Other Objective Functions

e Stein Discrepancy: with E,,.)[(7Tg)(2)] =0forg € G,

mmS[QHP = min Sup 4:q(z|:c)[(7ig)(z)]°
q q geg

e Example: (T¢g)(z) = V. logp(x, 2)'g(z) + Vig(z);

e OPVI (Ranganath et al. 2016) uses parametric test functions
G = {gn(2)}; (inefficient: it uses Hessian info for update)

e Avoid minimax problems: use kernels;

e Other objective function choices, e.g. MMD?
Idea 4: Amortize Stochastic Dynamics

e Sample z ~ q(z|x);
e Compute 2’ by running 7T-step stochastic dynamics;

e Update p + ¢+ (2/ — 2)'Vu f;
(one step gradient descent with L, measure ||z" — z||3)

o Already applied to energy-based models (Wang and Liu 2016);

e Can use other measures to chain the gradients.
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e True density: p(z) = 0.5N(z; —3,1) + 0.5/N (z; 3, 1);

e Approximation q is specified by the following procedure:

e; ~N(0,1),2 = (e3 = 0)R(e1; ¢1) — (e3 < 0)R(e€2; ¢2),
with R(e; ¢) defined by a one-hidden layer NN;

e GAN-KL: we discriminate between samples from ¢(z) and
p(z) = N(z;0,2) (using f-GAN (Nowozin et al. 2016) objective);

e Entropy Grad Approx: VyH([q] ~ Vpz(K +nl) 'V, K

EXAMPLE: GENERATIVE MODELLING

e Goal: compare with the benchmark (Gaussian VAE):
in this case the density of g is tractable, but
we will test methods which do not require log q.

e Model: 2-hidden layer MLP (500 units), latent dimension 20;
e WVA: NN with input size D;,, 4+ 100 (same hidden layers);
o All used K = 50 samples during training;
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Gaussian+VAE NN+SVGD
Dataset Gaussian+VAE Gaussian+SVGD NN+SVGD
Caltech 101 -123.50 -134.03 -129.27
MNIST -89.95 -106.40 -92.14

FUTURE WORK

e Visualise more toy examples;
o Test the GAN-KL type method on (deep) generative models;

e Develop amortized MCMC methods;
(currently testing SGLD + rejection step)

e How to improve sample efficiency?
(You can train a Gaussian VAE with only one sample!)




