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Abstract

We formalise the research problem of approximate inference in the wild: developing
new variants of variational methods that work for arbitrary variational approxi-
mation families for which inference (e.g., sampling or calculating expectation) is
tractable, but probability density function may be intractable. We provide several
examples for this type of approximations, discuss energy/gradient approximation
for existing techniques, and further comment on developing other variational objec-
tives and amortising stochastic dynamics. Connections and comparisons to existing
approaches are also briefly discussed.

1 Introduction

For many machine learning tasks, a probabilistic model is fitted to the underlying distribution of
the observed data. In the following we discuss w.l.0.g. latent variable models denoted by p(x|z; 8)
with prior pg(z), although the presented approaches extend to the general case. Here z denotes
the latent variables that a Bayesian approach would integrate out, e.g. the latent representation of
deep generative models and the weight matrices of Bayesian neural networks. The hyper-parameters
are loaded in @ which will be learned by (approximate) maximum likelihood estimation (MLE),
which requires the marginal likelihood p(x|0). Also given an observation «, inference requires
computing the exact posterior p(z|x; 6) = mpo(z)p(ﬂz; 0). Through out this paper we assume
the log-likelihood terms are tractable, but even so both quantities are intractable and hence require
approximations in most cases, .

Practical approaches for Bayesian inference include sampling-based and optimisation-based methods.
Sampling-based methods, e.g. Markov chain Monte Carlo (MCMC) [} 12,3} 4] approximate these
quantities by drawing samples from the exact posterior z¥ ~ p(z|xz;8) and use them later for
inference and prediction. However most of these approaches are unbiased only in asymptotes, and
in practice they can be computationally challenging for big models. In contrast, optimisation-based
methods provide fast yet powerful tools for Bayesian inference of large scale. These methods explicitly
define an approximate posterior distribution g(z|x), fit it to the exact posterior by optimising some
objective function £(0, ¢; ), and replaces the exact posterior with g(z|x) in inference/prediction
time. An example of optimisation-based methods is variational inference (VI) [3} 6], which maximises
the variational lower-bound in some distribution family Q:

po(2)p(z|z; 0)
q(z|z)
Maximising this lower-bound is equivalent to minimising the KL-divergence KL[q(z|x)||p(z|x; 0)].

Furthermore this lower-bound can also be used as a surrogate loss function for maximum likelihood
estimation (MLE), which optimises Ly;(0, ¢; ) w.r.t. @ given the training data x.
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The first batch of VI publications utilised ¢ distributions of simple forms, e.g. factorised Gaussians and
exponential families, in order to allow a closed-form calculation for inference. Recently Monte Carlo
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(MC) approximation [7, 8] has been introduced to the field, allowing a wider class of distributions to
be deployed. Critically, the introduction of MC approaches blurs the boundary of sampling-based
and optimisation-based methods, since then inference is also computed with the samples from the
approximate posterior. These methods are often referred to as black-box variational inference (8]
because they can be conveniently applied to generic posteriors p(z|x) without significant case-by-
case consideration. However, except a very recent work [9], most of these algorithms still require
tractability and fast evaluation of log ¢(z|x), that is, the variational approximation is still “white-box”
in terms of g. This requirement has become the major constraint for designing flexible approximations
to exact inference. In fact the state of the art methods, e.g. [[10, [11] to name a few, are hand-crafted
by domain experts, with carefully designed ¢ distributions and/or auxiliary distributions/objective
functions. New approaches that do not require the evaluation of ¢ will significantly simplify the
development of variational approximation methods, allowing the practitioners to focus on model
design for their specific tasks.

In this paper we formalise the research problem of using optimisation-based method to construct
“truly black-box” approximations, or in the language of this paper wild variational approximations to
distinguish from [8]. We provide several examples of such distributions, and discuss three classes of
methods towards fitting them to the exact posterior. A straight-forward idea is energy approximation,
i.e. approximating the terms involving g in the optimisation objective. Another interesting proposal is
direct gradient approximation, and potential methods in this line includes model-based approximation
[12,113]. The third proposal considers other optimisation objectives that do not require the tractability
of g. Finally amortisation of stochastic dynamics is briefly sketched. Hybrid methods combining
these four and other directions (e.g. gradient-free optimisation) are left to future work. We present all
these proposals in VI context (which is then named wild variational inference), although they can be
extended to other methods such as Bethe free energy [14}[15] and a-divergence methods [16}[17].

2 Wild variational approximations

2.1 Definition and examples

A wild variational approximation to the exact posterior is defined as follows.

Definition 1. A distribution q(z|x) is said to be a wild variational approximation to p(z|x) if

(i) it is fitted to the p(z|x) using an optimisation-based method;

(ii) inference with q(z|x) is comparatively easier, i.e. for the function F(z) in interest, it is easier to
compute (or estimate with MC methods) By, |z)[F(2)] than By 25 [F(2)];

(iii) the density q(z|x) is not necessary computable in a fast way.

We provide several examples in the following, with ¢ denoting all the trainable parameters for the ¢
distribution. In this paper we consider gradient-based optimisation methods for learning ¢.

Example 1. (Generative model) Sampling z ~ q(z|x) is defined by a generative model that trans-
forms random noise € ~ p(e) with a mapping z = f(e, x). A prevalent example of such mapping is
a (deep) neural network which takes @ and € as input and z as the output. It has been introduced to
VI as the reparameterization trick [18} 19, 20]], hence we also use reparameterizable proposal for
reference. The underlying distribution q is often intractable, or requires further approximations to be
computed efficiently.

Example 2. (Truncated Markov chain) Here the samples z ~ g(z|x) is defined by T-step transitions
of a Markov chain. Examples include T'-step Gibbs sampling process of a restricted Boltzmann
machine [21], or T-step simulation of an SG-MCMC algorithm such as SGLD [4]. In the latter case
the trainable parameters are the step-size and/or the preconditioning matrix and so on. Related work
includes [22]] which proposed an auxiliary lower-bound as the optimisation objective for this type of
variational approximations.

Example 3. (Stochastic gradient descent (SGD) with constant/adaptive learning rates) It has been
shown in [23} 24] that the trajectory of SGD with constant/adaptive learning rates near a local
optimum can be viewed as a variational approximation to the exact posterior. It has similar trainable
parameters ¢ as for truncated SG-MCMC algorithms. These methods are more expensive when
producing samples since they require evaluations of V log p(z, z), but still they can be much
cheaper than sampling from the exact posterior.



Example 4. (Stochastic regularisation techniques (SRT)) SRT methods for deep neural network
training, e.g. dropout [25]] and related variants [26l 27]], have been shown as a variational inference
method for network weights z = {W} [28] 29]]. In this case we consider ¢ = { M} (the weight
matrix used without SRT) as the variational parameters, and the network output is computed as
h = o((e ® ) M) with o(-) the activation function and € some random noise. This is equivalent
to set W = diag(e) M, making SRT a type of reparameterizable approximations as in example
Though in this case ¢(z|x) is tractable, practical evaluation during training can be slow since
different noise values € are sampled for different datapoints in a mini-batch.

The gradient of the trainable parameters V 4 Lvyy contains two parts: terms that involve evaluating
log g and/or V 4 log ¢, and other terms involving log p(z, ). As an example we consider reparame-
terizable ¢ distributions, where we might still keep the term V4 log p(z, ) (with z = f(€, x)), and
approximate V4 log ¢(z|x). In the following we discuss three potential solutions to this request.

2.2 Approximations for Optimisation

Energy Approximation. Assume g is reparameterizable, then by the chain rule the gradient V4L
is computed as VLV 4 f. This means if we have an approximation £ to the objective function,

then the gradient can be approximated by V4L ~ VLV 4 f. We name this approach as energy
approximation, since often the optimising objective can be interpreted as an energy function. For
non-reparameterizable distributions V4 f can be computed with further approximations such as the
generalised reparameterization trick [30].

A straight-forward method in this class considers density estimation based on the samples generated by
q. In this case a density estimator g, e.g. kernel density estimators (KDE) [31] or those parametrised
by a neural network [32]], is fitted to the samples {2* = f(€*,x)} ~ ¢, and the gradient of log ¢ is
approximated as V4 log ¢(z|x) ~ V. log §(z|x)Vef. One might even want to directly estimate
log g if it turns out to be more accurate. However practitioners should be careful for implementations
with automatic differentiation tools, since the parameters of the density estimator ¢ should not be
differentiated through (even though they depend on the samples z*).

The next proposal directly approximate (part of) the energy function, e.g. the entropy term H]g] or
the KL-divergence KL[g||po] in Lvi, and let the MC approach handle the rest. In MC-dropout [28]]

KL[q||po] is approximated by the Frobenius norm of the network weights % || M||% with dropout
rate p and length-scale [ defined by the prior. Similar approximations are in development process for
a-divergence approaches, aiming at extending SRTS to those variational methods.

A new direction for energy approximation applies density ratio estimation methods [33} 134} 35]]. This
is done by introducing an auxiliary distribution ¢ and rewrite the variational lower-bound:

po()p(@0) cz<z|w>]
——4————— +log .
q(z|z) q(z|w)
The auxiliary distribution g is required to have tractable density and is easy to sample from. Then one
can use sample-based density ratio estimation methods to fit a model R for the ratio between ¢ and q.

The gradient approximation for general g distributions can be derived similarly as

v v po(2)p(x|z; 0)
(}.’)‘CVI q |: ¢ 0g q( | )

A simple example considers ¢ = pg and the classification approach for ratio estimation. This means
we train a classifier D(z sampled from po|z) = (1 +exp[—R(z)])~* to distinguish samples from py
and g, A related approach is the adversarial auto-encoder [36] which uses the prior distribution as an
auxiliary. However the objective function proposed by [36] replaces the KL[g||po] in the variational
lower-bound with Jensen-Shannon divergence. Also the presented method can be extended to a
sequence of auxiliary distributions (in similar spirit as the annealed importance sampling [37]), which
can also be adapted slowly during training in order to obtain a better approximation.

£v1(9>(1§ 33) = IEq [log (2

+ V.R(2)Vy f} . (3)

Direct Gradient Approximation. The gradient of an accurate energy approximation might not
necessarily be a good estimator for the exact gradient V 4 L. Therefore direct gradient approximation
to the exact gradient might be preferred, if one cares less about the accuracy of the approximate
variational lower-bound. There exists a rich literature on (non-parametric) derivative estimation



[38,139] 140} 41}, 42]]; however, many of them require at least a noisy version of log ¢ at the sampled
locations, which is intractable in our case. Instead [12] applied a kernel estimator directly to the
first and higher order derivatives, and [13]] improved upon this idea by performing Kernel Ridge
regression directly on the derivatives. The usage of integration by parts avoided evaluations on the
actual gradients in [13]] to, making this algorithm applicable in our context.

New Optimisation Objectives. In variational inference the KL-divergence KL[g||p] is minimised to
obtain the approximate posterior. In general the KL-divergence minimisation can be replaced by other
optimisation-based approximation methods, as long as with the guarantee of recovering the exact
posterior if Q contains it. However simply replacing the objective with say other f-divergences will
not make the optimisation easier as ¢ has an intractable density. Neither the variational techniques for
estimating f-divergence [43| 44| as the exact posterior is difficult to sample from.

One promising direction is to replace KL divergence with the Stein discrepancy which has a special
form that does not require evaluating ¢(x) for minimisation. Briefly speaking, Stein discrepancy
involves a linear functional operator 7T, called Stein operator, on a set of test functions G = {g(z)}
such that E,,(»|4)[(7g)(2)] = 0 for Vg € G. Then the associated Stein discrepancy is defined as
S(q |l p) = supyeg Eq[(Tg)(2)]. For continuous density functions, a generic Stein operator is
Tg = (Vzlogp(z|x),g(z)) + V2 - g(2), for which E,.|)[(Tg)(z)] = 0, called Stein’s identity,
can be easily verified using integration by parts. Very recently [9]] defined G as parametric functions
represented by neural networks, and approximate the minimax optimisation with gradient descent
(similar to GAN [45]]). In contrast analytic solution for the maximiser g* exists if G is defined as the
unit ball of a RKHS, in which case we can find the optimal ¢ by standard stochastic optimisation for
minimising S(q || p).

Amortising Stochastic Dynamics. MCMC and particle-based approximate inference methods
[46.147]], though very accurate, become inefficient when inference from multiple different distributions
is repeatedly required. As an example consider learning a (deep) generative model, where fast
(approximate) marginalisation of latent variables is desirable. Instead we consider amortized inference
here, which learns an inference network to mimic a selected stochastic dynamics. More precisely, we
sample z ~ ¢(z|x), simulate T-step stochastic dynamics to obtain the updated particle z’ = z+eAz,
and update the ¢ distribution by minimising the lo-distance between z and 2/, i.e. E,[||z — 2/|[3].
When the step-size € is small, the update can be approximated by one-step gradient descent of the
lo-norm, resulting in ¢ < ¢ + eE,[V»2zAz]. Very recently [48]] applied the amortized SVGD idea
to learning energy-based models. Future work in this direction will consider SG-MCMC as the
stochastic transition model, and alternative measure to /o-norm (e.g. maximum mean discrepancy)
will also be tested.

3 Discussion

In this short paper we presented the research problem of constructing wild variational approximations
to the exact posterior. The development of wild variational approximation methods aims at simplifying
the design and application of approximate inference methods, allowing practitioners to focus more
on selecting an appropriate approximate distribution that suits the best with their needs. But still our
approach encourages the control of inference procedure (through the design of approximate posterior
and optimisation procedure), unlike previous research of automated methods that implemented
the inference engine transparently to the users. Future studies will develop better methods, more
applications and theoretical understandings for wild variational approximations, and we hope our
efforts can potentially motivate new ideas in the field.
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