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Abstract

We propose variational bounds on the log-likelihood of an undirected probabilistic
graphical model p that are parametrized by flexible approximating distributions q.
These bounds are tight when ¢ = p, are convex in the parameters of ¢ for certain
classes of ¢, and may be further parametrized by an arbitrarily complex neural
network. When optimized jointly over g and p, our bounds enable us to accurately
track the partition function during learning.

1 Introduction

Probabilistic graphical modeling is one of the most fundamental techniques in artificial intelligence
and representation learning. However, learning rich representational models involves major compu-
tational challenges. One of the main approximate inference techniques that deals with these chal-
lenges is variational inference. This approach seeks to find a tractable approximating distribution
q to a complex model p. Ideal ¢’s should be expressive, easy to optimize over, and admit tractable
inference procedures. Recent work has shown that neural network-based models possess many of
these qualities [4. 7, [1].

Here, we seek to extend this line of work via new variational inference techniques aimed at undi-
rected probabilistic graphical models. We propose variational upper bounds on the log-partition
function parametrized by an approximating distribution g. These bounds are tight when ¢ = p and
are convex in the parameters of ¢ for certain classes of g; for increased expressivity, ¢ can also be
parametrized by an arbitrarily complex neural network. Most interestingly, we also give a new con-
cave lower bound on the log-likelihood function; when optimized jointly over ¢ and p, it enables us
to accurately track the partition function during learning. Our techniques may serve as subroutines
in several classes of algorithms for learning representations.

2 Setup and background

Undirected graphical models. For expository purposes, we will focus our attention on Markov
random fields (MRFs), which are probabilistic models of the form pg(z) = pg(z)/Z(6), where
po(x) = exp(6 - x) is an unnormalized probability and Z(0) = E,pg(x) is the partition function.
Our approach also naturally extends to conditional random field (CRF) models.

Importance sampling. The partition function of an MRF in an intractable integral over p(x).
We may, however, rewrite it as I := [ pp(x)de = [ bol®) o(3)de = [, w(z)q(z)dz, where

q(z)
q is a proposal distribution. Integral I can in turn be approximated by a Monte-Carlo estimate
I :=L%" w(x;), where z; ~ q. The variance of this importance sampling estimate I has a

closed-form expression: E,)[w(x)?] — I2. By Jensen’s inequality, it equals 0 when p = q.



3 Variational bounds

The first term in the variance of the importance sampler is a natural bound on the partition function:

Eq(x) [%} > Z(0) (1)

Again, this bound is tight when ¢ = p. It implies a natural algorithm for computing Z(6): minimize
(1) over ¢ in some family Q. This can be interpreted as both minimizing the variance of I, and
as minimizing a tight upper bound on the partition function. A key decision concerns the choice
of approximating family Q: it needs to be expressive, easy to optimize over, and admit tractable
inference procedures. Here, we propose two such families.

3.1 Choice of approximating family

Non-parametric variational inference. First, as suggested by [2], we may take g to be a uniform

mixture of exponential families 22{:1 +qi(x; ¢1). In practice, the g, may be either Gaussians or
Bernoulli, depending on whether z is discrete or continuous. This choice of ¢ lets us potentially
model arbitrarily complex p given enough components; we will also see below that such g are easy
to optimize.

Auxiliary-variable neural networks. Alternatively, we may further parametrize ¢ by an arbitrar-
ily complex neural network. This approach is complicated by the fact that unlike earlier methods
that parametrized conditional distributions ¢(z|x) over hidden variables z, our setting does not admit
a natural input/output to a neural network.

We address this difficulty via extra auxiliary variables z in the approximating model g. First, we
define p(z, z) = p(x) for all z, z, and let q(z, z) = q(x|z)q(z), where ¢(z) is some simple prior
(e.g. normal or uniform), and g, (z|z) is an exponential family distribution whose natural parameters
are parametrized by a neural net, e.g. ¢(x|z) = N(ug(2),04(2)I) for continuous x. We may

perform importance sampling as follows: [ p(z)dx = [ p(z,z)dwdz ~ 37" %, where

Zi, z; ~ q(x, z). Note that this reduces to the previous case with an appropriate choice of g.

Convexity properties. An interesting property of our bound is that if ¢ is in the exponential family
with natural parameters ¢, then the bound is jointly log-convex in 6 and ¢. If we choose to further
parametrize the natural parameters of ¢ by a neural net, the resulting non-convexity will originate
solely from the neural network, and not from our choice of loss function.

3.2 Optimization

Assuming a non-parametric variational approximation Zszl Qi (@3 Pr), it is easy to show that the

gradient w.r.t. ¢y, is V, Eq% =E, [{jggi dk(x)} , where dj (z) is the difference between z and

its expectation under g,. Thus, we may optimize the bound (I)) using stochastic gradient descent
by taking samples from g;,. Note also that if our goal is to compute the partition function, we may
collect all intermediary samples for computing the gradient and use them as regular importance
samples. This may be interpreted as a form of adaptive sampling.

4 Variational random field learning

Next, we turn our attention to the problem of learning the parameters of an MRF. Given data
D = {z(}2_, our training objective is the log-likelihood log p(D|6) := > 7, log ps(z(V). We

can use our earlier bound to upper bound the log-partition function by log (Equ ’; 9((;));) . Unlike
Equation [I] we may no longer approximate the expectation with Monte-Carlo estimates due to the

non-linearity introduced by the log.



To deal with this issue we further linearize the log using the identity log(z) < az — log(a) — 1,
which is tight for a« = 1/z. Together with our bound on the log-partition function, this yields

1 T (i
> it (@) _
logp(D|6) > max — Z 0" x

(aEqui 9((;)); — log(a) — 1> .

2

This expression is convex in each of (6, ¢) and a, but is not jointly convex. However, it is straightfor-
ward to show that equation (2)) and its unlinearized version have a unique point satisfying first-order
stationarity conditions. This may be done by writing out the KKT conditions of both problems and

using the fact that o™ = (E Bo(z)” )~ 1 at the optimum. See [3]] for more details.

r~q g(z)?

Equaiton [2| may be optimized jointly over 6, ¢, with periodical updates for a. By training p and ¢
jointly, the two distributions may help each other. In particular, we may start learning at an easy 6
(where p is not too peaked) and use slowly ¢ to track p, thus controlling the variance in the gradient.

5 Experiments

Ising models. We evaluated empiri-
cally our learning strategy on a 5 X
5 Ising MRF with coupling factor
J and unaries chosen randomly in
{1072, -1072}. We set J = —0.6,
sampled 1000 examples from the model,
and fit another MRF to this data. We
followed a non-parametric inference ap-
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proach with a mixture of K = 8 Bernoullis. We optimized using SGD with fixed stepsizes
chosen by cross-validation; we alternated between ten steps over the ¢ and one step over 6, a. We
drew 100 Monte Carlo samples per g;. Our method converged in about 25 steps over 6. At each

iteration we computed log Z via importance sampling.

Our Figure shows the evolution of log Z during learning. It also plots log Z computed by exact in-
ference, loopy BP, and Gibbs sampling (using the same number of samples). Our method accurately
tracks the partition function after about 10 iterations. In particular, our method fares better than the
others when J ~ —0.6, which is when the Ising model is entering its phase transition.

Digits dataset. Next, we also train
RBMs on the sklearn digits dataset us-
ing ADAM with mini-batches of size
100, 81 = 0.7, Bo = 1073, a = 1073,
We compute true likelihood via AIS
with 10,000 intermediate steps. The ap-
proximating ¢ is a uniform mixture of
K = 10 Bernoullis.

The adjacent figure compares the train-
ing log-likelihood of our method to
that obtained by PCD-1, with 100 in-
dependent Gibbs chains. We find that
our method tracks closely the value of
the true partition function and learns a
model at a rate comparable to that of
PCD-1.

6 Discussion
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Our work is inspired by variational autoencoders [4], which involve tightening variational lower
bounds using neural networks. Our work provides analogous upper bounds that also hold for
undirected and discrete variable models; interestingly, they may be interpreted as an inclusive a-
divergence [5]. Alternative rich proposal distribution families include normalizing flows [6]] and



Variational Gaussian Processes [9)]. Finally, the unpublished manuscript of [8]] proposed similar
adaptive importance sampling methods, but did not discuss tightness or applications to MRF learn-

ing.

Limitations. Our technique’s main shortcoming is high variance in the Monte Carlo gradient esti-
mates if g is initially far from p, and the latter is “peaked”; in such cases, we may never sample from
the modes of p. Thus, our techniques are more suitable for learning, where p is initially “easy”, and
q tracks p during the learning procedure.

Future work. Our next steps are to validate the method in more complex models, such as restricted
Boltzmann machines and CRFs, to use more complex neural-network reparametrizations, and to
compare with additional methods such as annealed importance sampling.

Our methods may also augment existing inference methods, for example by bounding the log-
partition function within classical variational lower bounds. Our bound may also serve as a loss
for training variational autoencoders: since it corresponds to an inclusive divergence, it may help
avoid overfitting distributions to specific modes, a problem that has recently received research atten-
tion [1]].
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