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Abstract

A currently popular technique for learning generative models is generative adversar-
ial networks (GANs). They form a basis to learning generative models by learning
to discriminate true samples versus fake ones to guide a model towards good solu-
tions that can fool a strong discriminator into assigning high probability of being
true to model samples. It has been shown that GANs minimize a well-defined
f-divergence, the Jensen-Shannon divergence, between the model distribution and
the data distribution. However, current best practices have a number of shortcom-
ings. Typically, GANs are considered to be models and are not understood in the
context of inference. In addition, current techniques rely on global discrimination
of joint distributions to perform learning, which is ineffective. We propose to
alleviate this limitation by showing how to relate adversarial learning to distributed
approximate Bayesian inference on factor graphs. We propose local learning rules
based on message passing which minimize a global variational criterion based
on adversaries used to score ratios of distributions instead of explicit likelihood
evaluations. This yields an inference and learning framework that faciliates treating
model specification and inference seperately by combining ideas from message
passing with adversarial inference and can be used on arbitrary computational
structures within the family of Directed Acyclic Graphs and models, including in-
tractable likelihoods, non-differentiable models and generally cumbersome models.
We thus present adversarial learning under the viewpoint of approximate inference
and modeling. We combine adversarial learning with nonparametric variational
families to yield a learning framework which performs implicit Bayesian inference
on graph structures by sampling particles, without the need to evaluate densities.
These approaches hold promise to be useful in the toolbox of probabilistic modelers
and have the potential to enrich the gamut of flexible probabilistic programming
applications beyond current practice.

1 Introduction & Related Work

We discuss adversarial learning from the perspective of distributed Bayesian inference on generative
models. We generalize adversarial learning to arbitrary structured models by introducing a local
message passing algorithm based on adversaries and show that is is performing a clean approximation
to a posterior defined by an explicit model. We thus present novel work that explains and clarifies
the separation of modeling and inference in the context of adversarial learning and opens the door to
building flexible probabilistic programs using adversarial inference.

In recent work it has been shown that neural networks can be used as samplers for divergence
minimization in a general class of divergences [1]. Furthermore, it was clarified in concurrent work
very much in the same spirit with our paper such as [2] and [3] that Generative Adversarial Networks
can be seen as a form of inference on ratios of partition functions, with early links towards training
generative models. First steps towards GANs on structured models were taken in recent papers like
the SeqGAN [4], Professor Forcing [5] and [6]. We highlight that a side-result of [7] is a derivation
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of a KL-divergence loss for standard GANs and the introduction of instance noise, both of which are
related to results we discuss in our Appendix. Finally, inference for a narrow class of specific fixed
instances of models was introduced in similar fashion in [8], [9] and [10]) using global adversaries,
but not generalized to more flexible models.

2 Generative Adversarial Networks

Basic GANs have been postulated to follow a value function playing an adversarial game between a
discriminator D with parameters ξ and a generator G with parameters θ.

min
θ

max
ξ
V (ξ, θ) = Ex∼p∗(x)logD(x; ξ) + Ex∼Q(x)log(1−D(x; ξ))

= Ex∼p∗(x)logD(x; ξ) + Ez∼P (z)log(1−D(G(x; θ); ξ))
(1)

For m(x) = 1
2p(x) + 1

2q(x) an analogy can be shown between the value function and the following
probabilistic formulation.

JSD(q(x)||p(x)) =
1

2

∫
x∗

q(x∗)log
q(x∗)

m(x)
dx+

1

2

∫
x∗

p(x∗)log
p(x∗)

m(x)
dx

=
1

2

∫
x∗

q(x∗)log
q(x∗)

m(x)
dx+

1

2

∫
z

p(z)log
p(x|z)
m(x)

dz

(2)

3 Approximate Inference in Graphical Models through Adversarial
Learning

We show, that instead of one large GAN discriminating between the joint distribution of all variables
in graphical models (as done in [8], [9] and [10]), we can perform distributed adversarial inference
by discriminating locally for each variable whether it is a valid sample or not. We can maximize
these local discriminators to yield a globally convergent distributed learning procedure, adversarial
message passing.

We are given a joint distribution over I-many variables p(X) = p(x0, .., xI) with a graph structure G
and a factorization given by the computational graph p(X) =

∏
i

p(xi|pa(xi)), where pa(xi) denote

the parents of variable xi in G. We can derive an inverse factorization q(X) =
∏
i

q(xi|p̃a(xi)) which

preserves the variable dependence structure. In the inverse factorization, we consider p̃a(xi) to be the
part of the Markov blanket for the variable xi needed in order to d-seperate it given observations.
These factorizations have been explained at length in the context of stochastic inversion [11] and
form a structured inverse factorization as used in variational inference [12], while also being widely
used in the message passing literature [13],[14].

P (X) = P (x1, x2, ..., xD) =

D∏
i=1

P (xi|pa(xi)). (3)

We use factorizations of dependencies as the basis to derive schemes for Bayesian Learning and
inference which take advantage of adversarial learning.

3.1 Adversarial Message Passing For JS-Divergence Minimization

In this section, we match the local Jensen-Shannon divergence (JSD) of variables to perform approxi-
mate inference locally.

We use the intuition that we wish to match the local statistics of approximations to the posterior by
minimizing a divergence Div at each factor indexed by i, Div

(
q(x∗i , p̃a(xi))||p(xi, pa(xi))

)
. This is

a typical assumption in divergence based message passing [15].
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Given a definition of m(xi, pa(xi)) =
[
0.5q(xi, p̃a(xi)) + 0.5p(xi, pa(xi))

]
, we can express local

minimization of the JSD as a sum of divergences, compactly written as follows:

Divloc
(
q(X)||p(X)

)
=

1

2

∫
x0

p∗(x0)...

∫
xI

q(xI |p̃a(xI))log

I∏
i=1

q(xi−1, p̃a(xi−1))

I∏
i=1

m(xi−1, pa(xi−1))

dx0...I

+
1

2

∫
xI

p(xI)...

∫
x0

p(x0|pa(x0))log

I−1∏
i=0

p(xi, pa(xi))

I−1∏
i=0

m(xi, pa(xi))

dx0...I

(4)

We rephrase the above divergence in terms of a sum of the local adversaries by noting that each factor
can be expressed as an expectation over the score of the class the discriminator will assign to the
bottom-up and top-down samples.

We can use an optimal discriminator D∗i as an adversary at each local factor i to express ratios
of distributions D∗i (xi, pa(xi)) = p(xi,pa(xi))

m(xi,pa(xi))
and 1 − D∗i (xi, pa(xi)) = q(xi,p̃a(xi))

m(xi,pa(xi))
. In order to

calibrate these adversaries, we can derive a loss function LlocD and train models to discriminate
between inference and model samples generated during training.

Combining these adversaries with Equation 4 yields a reparametrized form of the divergence term:

Divloc
(
q(X)||p(X)

)
=

1

2

∫
x0

p∗(x0)...

∫
xI

q(xI |p̃a(xI))log
[ I∏
i=1

(
1−D∗i (xi−1, p̃a(xi−1))

)]
dx0...I

+
1

2

∫
xI

p(xI)...

∫
x0

p(x0|pa(x0))log
[ I−1∏
i=0

(
D∗i (xi, pa(xi))

)]
dx0...I

(5)

This joint term can be approximated efficiently across each local term by performing bottom-up
sampling of L particles through inference models and K top down samples from the prior. This
procedure yields two Markov chains transitioning from evidence to prior and from prior to evidence
in a setting similar to that used for the Bennet acceptance ratio estimator [16] and related newer
work [17, 18, 19, 20, 21].

We consider generative models to be parameterized by parameters θ capturing the generative factors
and inverse models performing inference over unobserved variables Xu and observed variables Xo

to be parametrized by φ denoting variational parameters or parameters of inference models. Learned
adversaries have parameters ξ. We obtain the following objective function for learning graphical
models using the above:

LlocM (θ, φ|X) = Divloc
(
q(X|φ))||p(X|θ)

)
(6)

Concurrently, since the variable-wise adversariesDi(·|ξ) need to be trained to approximate optimality,
we can derive a loss function for them as follows:

LlocD(ξ|X) = −
[
Exi,pa(xi)logDi(xi, pa(xi)) + Exi−1,p̃a(xi−1)log(1−Di(xi−1, p̃a(xi−1)))

]
(7)

Equality to the JSD holds when for each factor i we minimze the divergence between the approxima-
tion and the true distribution, obtaining p̃a(xi)) = p(xi|pa(xi)) This also reveals that the fixed points
of Divloc are the fixed points of JSD, which correspond to global fixed points to the true distribution.
In general, Divloc provides a looser divergence than JSD, which intuitively makes sense since it
performs a local calculation through message passing and formally can be shown by comparing the
denominators in the respective divergence terms.

A divergence which is smaller or equal to JSD overestimates the fit to the likelihood compared to
JSD theoretically, but we obtain the following practical benefits through distribution of our JSD
calculation:
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1. In the adversarial framework, calculating the global JSD requires learning and evaluation
of a discriminator over the joint distribution. For larger graphical models with multiple
potentially high-dimensional variables, this quickly becomes impossible or impractical.

2. As long as the discriminator is far away from the Bayes-Optimal discriminator, the as-
sumption to reparametrize the ratio-term through the discriminator is not fulfilled. Local
discriminators have a better chance of obtaining locally strong solutions for smaller tuples
of variables than global discriminators of an entire graphical model state.

3. Local discriminators furthermore permit interesting learning settings, like partial observ-
ability as occuring in semi-supervised learning, time-series with irregular time-steps, multi-
modal data-sets with missing modalities and more.

With our framework, we perform local discrimination per factor and achieve a similar computation to
that of a global discriminator needed for the global JSD to hold, see Algorithm 1.

Algorithm 1 Adversarial Message Passing
1: procedure ADVMP(X, iter) . X: a given dataset, iter: # of iterations
2: φ0 ∼ P (φinit)
3: w0 ∼ P (winit) . initialize weights of prior and model approximation
4: ε0 ∼ p(ε) . Initial Noise-vector
5: for t ≤ iter do . Loop over iterations
6: for Xt ∈ X do . Sample minibatch Xt

7: ∀i : xli ∼ q(xi|p̃a(xi)) . Infer parents of each variable with inference model
8: ∀i : xki ∼ p(xi|pa(xi)) . Sample from model (using θ or specified model)
9: εt ∼ p(ε) . Sample an appropriate noise vector

10: for i in factors do . Cycle through factors and update parameters
11: ξt,i ← ξt−1,i − ∂LlocD(θt−1,φt−1,ξt−1;εt,Xt)

∂ξ

12: θt,i ← θt−1,i − ∂LlocM (θt−1,φt−1,ξt−1;εt,Xt)
∂θt−1

13: φt,i ← φt−1,i − ∂LlocM (θt−1,φt−1,ξt−1;εt,Xt)
∂φ

14: return θt, φt, ξt . Parameters for the adversaries ξ, variational approximations φ, model θ
learned from data X

4 Discussion

Adversarial Message Passing provides a framework to perform likelihood-free learning for explicit
graphical models. It furthermore enriches the family of message passing algorithms by a previ-
ously intractable divergence class and faciliates the usage of nonparametric variational families for
likelihood free learning and inference in graphical models. We note that more general classes of
divergences such as f-divergences fall under this framework, since adversaries serve as function
approximations to score ratios of distributions and can be composed locally to infer larger models.
In the appendix we exhibit similar treatments for KL-divergence as an example. Interestingly, this
allows us to cleanly derive combinations of adversarial loss functions with explicit parametric losses
mapping to likelihood maximization, as empirically used by various previous papers without formal
justification. It is also easy to mix different divergences locally depending on suitability. Furthermore,
a generalization of the work presented here can use MMD [22] to perform local approximations
in computational graphs. Finally, we suggest that the introduced message passing scheme can be
generalized to undirected graphical models in future work.
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5 Appendix

5.1 Learning Deep Generative Models

We exemplify how to use the introduced framework at the example of a deep generative model with
two stochastic layers, applied to modeling MNIST digits.

X X X X

Z1 Z1 Z1Z1

Z2 Z2Z2Z2

X X

Z1Z1

Z2Z2

X

Z1

Z2

(a) (b) (c) (d)

Figure 1: We show the four different learning variants. Black boxes indicate adversaries connected to
their input variables. (a) A standard adversarial network which only has to generate observable X (b)
A deep variant of a global bidirectional adversarial network (c) A model using adversarial message
passing with JSD minimization using local adversaries (d) A model using adversarial message passing
with KL minimization using local adversaries.

The generative model is defined as follows:

1. z2 ∼ P (z2)

2. z1 ∼ P (z1|z2)

3. x ∼ P (x|z1)

We use two adversaries D1(x, z1) and D2(z1, z2) to drive learning. The inverse factorization here is
trivial since Markov blankets on chain-graphs form unique tupels of variables. We show the different
inferential strategies in Figure 5.1.

We note that compared to the usual application of GANs, we explicitly define the model here. For
instance, P (z2) = N (0, 1), P (z1|z2) = N (µz2 ,Σz2), P (x|z1) = Ber(µz1).Interestingly, when
we generate from the priors we also sample observation noise from the Bernoulli likelihood. This
yields similar results to what is defined as instance noise in [7], since a layer of noise is added to all
generated images before they are passed into adversaries.
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5.2 Derivations for Variational Inference

For a model P (x, z) with variable z we can derive the following:

KL(q(z|x)||p(z|x)) =

∫
z

q(z|x)log
q(z|x)

p(z|x)
dz

=

∫
z

q(z|x)log
q(z|x)p(x)

p(x, z)
dz

=

∫
z

q(z|x)log
q(z|x)p(x)

p(z)p(x|z)
dz

=

∫
z

q(z|x)log
q(z|x)

p(z)p(x|z)
dz + logp(x)

=

∫
z

q(z|x)log
q(z|x)

p(z)
dz −

∫
z

q(z|x)logp(x|z)dz + logp(x)

logp(x) =

∫
z

q(z|x)logp(x|z)dz −
∫
z

q(z|x)log
q(z|x)

p(z)
dz + KL(q(z|x)||p(z|x))

logp(x) ≥
∫
z

q(z|x)logp(x|z)dz −
∫
z

q(z|x)log
q(z|x)

p(z)
dz

logp(x) ≥
∫
z

q(z|x)logp(x|z)dz − KL(q(z|x)||p(z))

(8)

5.3 Generative Adversarial Networks For KL-divergence minimization

Assuming D(x) = p(x)
q(x)+p(x) and (1−D(x)) = q(x)

q(x)+p(x) and D(x) being a Bayes-optimal discrim-
inator , we can derive the following divergence:

KL(q(x)||p(x)) =

∫
x

q(x)log
q(x)

p(x)
dx

=

∫
x

q(x)log
1−D(x)

D(x)
dx

(9)

This has also been considered as a loss function for adversarial learning in recent work on image
super-resolution [7].

5.4 Adversarial Message Passing For KL-Divergence Minimization

In the following we will derive two distinct learning rules which will enable us to perform implicit
divergence minimization using adversarial learning as a deterministic posterior approximation tech-
nique using the KL divergence. This is a similar procedure to the one considered in the main paper,
but minimizes a different divergence and matches reconstructive statistics over marginal ones as
performed with JSD.

5.4.1 Adversarial Inference With Tractable Likelihoods

The first learning rule is appropriate when we have explicitly stated models using the log-likelihood.
Good-looking samples have been obtained in previous literature by blending adversarial losses and
reconstruction losses and here we derive a principled explanation for some instances of them.
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We assume D(z, x) = p(z)
q(z|x)+p(z) and (1−D(z, x)) = q(z|x)

q(z|x)+p(z) .

logp(x) =

∫
z

q(z|x)logp(x|z)dz −
∫
z

q(z|x)log
q(z|x)

p(z)
dz + KL(q(z|x)||p(z|x))

logp(x) ≥
∫
z

q(z|x)logp(x|z)dz −
∫
z

q(z|x)log
q(z|x)

p(z)
dz

=

∫
z

q(z|x)logp(x|z)dz −
∫
z

q(z|x)log
1−Dz(z, x)

Dz(z, x)
dz

= Lrec(x|θ, φ)−
∫
z

q(z|x)log
1−Dz(z, x)

Dz(z, x)
dz

(10)

We can easily draw samples for p(z) and q(z|x) from the prior and inference model, respectively,
and can thus easily train a powerful classifier Dz to perform the required discrimination.

This setting is particularly useful when combining adversarial training with tractable likelihoods and
intractable posteriors and matches the model used for Adversarial Autoencoders [10].

5.4.2 Adversarial Variational Inference With Intractable Likelihoods

For q(x) being the true data distribution represented by samples of a dataset and p(z) a prior, we
assume Dz(z, x) = p(z)

q(z|x)+p(z) and (1−Dz(z, x)) = q(z|x)
q(z|x)+p(z) . We furthermore similarly assume

that 1 − Dx(x, z) = q(x)
q(x)+p(x|z) . Then, we can express the results from Section 5.4.1 such as to

avoid having to calculate an explicit reconstruction and can express that term through the adversarial
score assigned to a reconstruction.

logp(x) =

∫
z

q(z|x)logp(x|z)dz −
∫
z

q(z|x)log
q(z|x)

p(z)
dz + KL(q(z|x)||p(z|x))

logp(x) ≥
∫
z

q(z|x)logp(x|z)dz −
∫
z

q(z|x)log
q(z|x)

p(z)
dz

=

∫
z

q(z|x)logp(x|z)dz −
∫
z

q(z|x)log
1−Dz(z, x)

Dz(z, x)
dz

=

∫
z

q(z|x)log(1−Dx(p(x|z)))dz −
∫
z

q(z|x)log
1−Dz(z, x)

Dz(z, x)
dz

(11)

This framework reveals how a carefully chosen adversarial cost and an explicit likelihood represent
the same terms and can be combined. This is intuitively performed in various papers in previous
literature [23, 24] and explained formally here.

5.4.3 Mixed Adversarial Variational Inference

In Sections 5.4.1 and 5.4.2 we show how KL divergence can lead to adversarial objective functions
for tractable and intractable likelihoods. It is easy to see, that the two objectives shown are precisely
the same for optimal discriminators and known likelihoods, since the regularizer involving the
latent variable is the same. This clearly explains the ability to learn strong generative models when
combining both approaches, since they correspond to the same criterion but are calculated in different
ways. Optimization-wise, it may confer benefits for the learning of the discriminator to blend its cost
with an explicit likelihood or regularizer on the latent variable, if such an explicit parametric form is
known. Similarly, this can be chosen at any factor in a graph: applying the trick of replacing ratios
with adversaries can be used at will at every factor, since the objective is not affected.
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As such, we have shown that for generative modeling it is still a separate task to determine a model
from its explicit learning and inference algorithm. Additionally, the choice of divergence and overall
learning procedure is unrelated to picking adversarial or likelihood-based learning. Both stem from
the same objective and should be used where appropriate to facilitate robust approximate inference in
graphical models. Adversarial learning can better cope with intractable distributions at the cost of
potential saddle points during optimization while explicit likelihood-based learning is stable at the
cost of complexity in the variational approximation it induces.

5.5 Feature-based Message Passing

An alternative representation stems from a feature view on density ratios. The introduction of maxi-
mum mean discrepancy [22] provides the theoretical underpinnings to understand any distribution as
a point in an adequately complicated vector space and a two-sample test to depend on the statistics on
the distances betweeen different distributions represented by points in that space. The basis of many
divergences is the evaluation and minimization of expectations of ratios or, in the case of the JSD,
a softmax ratio between two distributions. In the context of MMD, this corresponds to minimizing
distances in appropriate spaces between the approximate and the true distributions.

MMD-networks [25] use this methodology as a means to learn generative models and our framework
fits this as well.

5.6 Divergence Minimization and Generation With Nonparametric Observation Models

Currently, sampling from q(x|p̃a(x)) is typically implemented using the reparametrization trick and
generalizations thereof and takes the form:

q(x|p̃a(x)) =

∫
ε

grt(fpm(p̃a(x)), ε). (12)

where fpm is a mapping (for instance a neural inference network) from an input to a parametric
variational family.

We propose to free variational families from their parametric corsets and parametrize a more flexible
variational family through a nonlinear function fvf . We directly sample from the approximate
posterior by injecting the noise vectors as additional inputs into the nonlinear transformation of the
parents, xl = fvf (p̃a(x), εl). A (not necessarily normalized) variational family is thus modeled by:

q∗(x|p̃a(x)) =

∫
ε

p(ε)fvf (p̃a(x), ε)dε. (13)

The subtle but powerful difference is that now the samples xl can represent an arbitrary distribution,
constrained only by the capacity of the nonlinear function fvf and the dimensionality of the noise
vector εl. This trick also forms the basis of DISCO networks [26] and was mentioned in the context of
adversarial autoencoders [10]. However, we re-introduce this trick as a general tool to represent rich
variational families, which are a good fit with our flexible adversarial message passing framework,
thereby generalizing from the specific cases mentioned ahead to a general approximate inference
framework. Specifically, previous variational inference techniques require a parametric form of
the approximate posterior, such as obtained when using the reparametrization trick, in order to
evaluate the divergence term needed to regularize learning. Within our framework, this divergence
term is implicitly represented through samples which are scored within the adversarial framework,
relieving the probabilistic modeler of the need to choose an explicit parametric form for approximate
posterior families. Together with other recent powerful advances in variational inference, such as
the generalized reparametrization gradient [27] and a rejection sampling generalization [28] which
both learn explicit transformations h(g(·)) to represent complex parametric variational families, this
enables practical use of complicated modeling assumptions which are not limited by tractability of
the typically occuring ratios within many divergence terms. We also note the concurrently published
work [29], which focuses on a related idea irrespective of the link to adversarial inference, but gives
deeper theoretical insights into the applicability of the same trick and provides further justification
for our application thereof. Finally, we note that the same approach can also be used to specify
implicit observation noise models in generative models, such as done in generative neural samplers
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as introduced in the original GAN paper [30]. While this is not explicitly mentioned in [30], it is
plausible that generative adversarial networks can learn arbitrary noise models that may be hard to
represent analytically and the typically high-dimensional inputs to the networks can be interpreted to
factorize into noise contributions and actual latent variables.
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