
ELFI: Engine for Likelihood-Free Inference

Antti Kangasrääsiö1, Jarno Lintusaari1, Kusti Skytén1, Marko Järvenpää1, Henri
Vuollekoski1, Michael Gutmann2, Aki Vehtari1,5, Jukka Corander3,4,5, Samuel Kaski1,5

1Helsinki Institute for Information Technology HIIT, Department of Computer Science,
Aalto University, Helsinki, Finland

2School of Informatics, University of Edinburgh, Edinburgh, UK
3Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics,

University of Helsinki, Helsinki, Finland
4Department of Biostatistics, University of Oslo, Norway

5Equal contributions

Abstract

We introduce an Engine for Likelihood-Free Inference (ELFI), a software package
for approximate Bayesian inference that can be used when the likelihood function
is difficult to evaluate or unknown, but a generative simulator model exists. The
software is in Python, and its modular library design emphasizes both ease-of-use
and expandability, allowing arbitrary user-defined simulators and implementation
of new inference methods with minimal effort. Probabilistic inference models
can be represented intuitively as graphs, and users can execute the inference in
a computational environment best suited for their needs, from single laptops to
cluster computers. The whole inference pipeline is automatically parallelized,
and intermediate results may be stored to disk for later use. The package includes
implementations of some of the most advanced likelihood-free inference techniques.
One example of these is BOLFI, which estimates the discrepancy function using
Gaussian processes and uses Bayesian optimization for parameter search, which
has recently been shown to accelerate likelihood-free inference up to several orders
of magnitude.

1 Introduction

The likelihood function associated with a probabilistic model is often difficult or impossible to evaluate
directly, in particular when the generative model is only defined as an executable simulator. Inference
of such models may be accomplished with indirect inference, synthetic likelihood or Approximate
Bayesian Computation (ABC) [2, 7, 9]. All of these methods are based on the assumption that the
qualities of the simulated data vary relatively smoothly with changes in the model parameters. The
general approach is that observed data are systematically compared to data acquired from simulations
with sampled parameters. For example, in the case of ABC, this allows us to create an approximate
posterior distribution for the parameters of interest. [5, 6, 4]

Multiple software packages for ABC already exist in many programming languages [8]. However,
with the increasing popularity of the Python programming language also among data scientists, an
expandable Python package for likelihood-free inference is attractive, in particular because the most
efficient machine learning based tools for accelerating ABC inference have recently become available
in Python and these options remain unavailable in existing ABC packages. We introduce a general,
modular ABC framework: Engine for Likelihood-Free Inference (ELFI).
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2 Description of the software package

The ELFI Python package has been designed with three main requirements in mind. First ELFI is
easy to use and features a user interface that allows the researcher to define the inference problem in
the form of graphical models. This supports the intuitive creation of complex probabilistic models. In
likelihood free inference (LFI), the probabilistic model contains parameters for which the likelihood
is defined implicitly by a simulator model. The simulator may be any user-defined Python function or
a binary executable that fulfils minimal interface requirements.

Second, any modern software should take advantage of the increasing number of processing units
in computing hardware. Therefore, ELFI has been implemented so that running the user-defined
simulator, the calculation of the similarity metric and feasible parts of the ABC algorithms, are
automatically parallelized for distributed computing. The parallelization has been implemented with
the Python package Dask [1], which scales well from a laptop computer up to a distributed cluster
environment.

Third, ELFI is modular and follows the object-oriented paradigm. The development and testing
of new inference methods on top of the framework requires minimal effort and provides all the
advantages of existing functionality, such as parallelization, handling the states of the pseudo random
number generators and persisting results to disk. Due to the object oriented approach, one can
readily extend existing functionality. Currently included LFI methods are the rejection sampling,
the sequential Monte Carlo sampling and the Bayesian Optimization for Likelihood-Free Inference
(BOLFI) framework, which has been shown to reduce the total computational burden by several
orders of magnitude [3].

ELFI is open-source under the liberal BSD3 license. This allows community effort in maintaining
and further developing the library. While ELFI will remain in an active development by the authors,
contributions are welcome and ELFI will give explicit credit to contributors.

More information including source code, documentation and examples can be found at the ELFI
website: http://elfi.readthedocs.io.

3 Example use case: Moving average model

As an example use case for ELFI, consider the MA(2) model [5]. The zero-mean MA(2) model is a
moving average of three consecutive independent and identically distributed components of white
noise (wk)k∈Z ∼ N(0, 1) such that

xt = wt + θ1wt−1 + θ2wt−2 (1)

with parameters θ1, θ2 ∈ R. Given observations Y , inference of unknown parameters θ1, θ2 is
intractable due to the high stochasticity and difficult likelihood. In ELFI one could infer the parameters
by defining a graph as in Figure 1: setting priors for θ1 and θ2, defining a simulator (MA2) that
depends on those parameters, defining summary statistics S1 and S2 (e.g. autocovariances) that
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Figure 1: An example of a probabilistic model that ELFI uses to infer the parameters θ1 and θ2 in the
MA(2) model.
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depend on the simulated (and observed) data and finally a distance metric d that depends on the
summary statistics. The user chooses an inference algorithm, and the computations are automatically
parallelized. Given the simulator and the required summary statistics and discrepancy functions, the
ELFI part of the inference can be done in few lines of legible Python code:

import elfi

# the simulator, summary statistics and discrepancy functions
from X import MA2, acov1, acov2, L2dist

# Model definition as nodes: name, operation and parents
t1 = elfi.Prior(’t1’, ’uniform’, 0, 2)
t2 = elfi.Prior(’t2’, ’uniform’, 0, 2)
Y = elfi.Simulator(’MA2’, MA2, t1, t2, observed=y_obs)
S1 = elfi.Summary(’S1’, acov1, Y)
S2 = elfi.Summary(’S2’, acov2, Y)
d = elfi.Discrepancy(’d’, L2dist, S1, S2)

# Inference algorithm (Quantile-based rejection sampling)
rej = elfi.Rejection(d, [t1, t2])
n_samples = 10000
results = rej.sample(n_samples, quantile=0.01)

# More advanced inference algorithm (BOLFI) using Gaussian process
gp_model = elfi.GPyModel(input_dim=2, bounds=((0,2), (0,2)))
bolfi = elfi.BOLFI(d, [t1, t2], n_surrogate_samples=150,

model=gp_model)
posterior = bolfi.infer()

Note that using just uniform priors renders the MA(2) case unidentifiable [5]. The graphical model
syntax of ELFI supports also hierarchical priors, assuming the user has defined their distributions:

from X import Prior_t1, Prior_t2

# replace the definitions for priors in the above code
t1 = elfi.Prior(’t1’, Prior_t1, 2)
t2 = elfi.Prior(’t2’, Prior_t2, t1, 1) # t2 depends on t1
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