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Abstract

Many machine learning applications are based on personal data (e.g. behavioural or health data). When analysing such
data, one has to make sure data subjects’ identities or the privacy of the data are not compromised.
Differential privacy constitutes a powerful framework to protect the privacy. Differentially private versions of many important
machine learning methods have been proposed, but there is a lack of an efficient unified approach applicable to
arbitrary models.
We propose a differentially private variational inference method with a very wide applicability. It is built on top of automatic
differentiation variational inference (ADVI). We add differential privacy into ADVI by clipping and perturbing the gradients.

Background: Differentially private learning

(ε, δ)-Differential privacy
A randomised algorithm A is (ε, δ)-differentially private (DP) if for all pairs of adjacent
data sets x , x ′ and for every S ⊂ im(A)

Pr(A(x) ∈ S) ≤ eε Pr(A(x ′) ∈ S) + δ.

When δ = 0, we get ε-DP, also known as pure DP.

Gaussian mechanism
Given query f with `2-sensitivity of ∆2(f ), releasing f (x) + η, where η ∼ N(0, σ2), is
(ε, δ)-DP when

σ2 >
2 ln(1.25/δ)∆2

2(f )

ε2
.

`2-sensitivity of a query is defined as:

∆2(f ) = sup
x ,x ′

||x−x ′||=1

||f (x)− f (x ′)||2.

Composition
I If an algorithm is (ε, δ)-DP, then k -fold composition of that algorithm provides

(kε, kδ)-DP
I Advanced composition theorem [2]: Given algorithm A that is (ε, δ)-DP and
δ′ > 0, k -fold composition of algorithm A is (εtot, δtot)-DP with

εtot =
√

2k ln(1/δ′)ε + kε(eε − 1), δtot = kδ + δ′.

I Privacy amplification theorem [3]: If we run (ε, δ)-DP algorithm A on randomly
sampled subset of data with uniform sampling probability q > δ, privacy
amplification theorem states that the subsampled algorithm is (εamp, δamp)-DP with

εamp = log(1 + q(eε − 1)), δamp = qδ,

assuming log(1 + q(eε − 1)) < ε.
I Moments accountant [4] can yield smaller εamp than advanced composition

theorem by taking noise distributions into consideration

Differentially Private Automatic Differentiation Variational Inference (DP-ADVI)

Variational inference
I True posterior p(θ|x) is approximated with a variational distribution qξ(θ)

that has a simpler form (e.g., qξ(θ) =
∏

d qξd(θd)).
I ξ∗ are obtained through minimising the Kullback–Leibler (KL) divergence

between qξ(θ) and p(θ|x)
I Equivalently, maximising the evidence lower bound (ELBO)

L(qξ) =

∫
qξ(θ) ln

(
p(x,θ)

qξ(θ)

)
= −KL(qξ(θ) ||p(θ)) +

N∑
i=1

〈ln p(xi|θ)〉qξ(θ)

=
N∑

i=1

(
−1

N
KL(qξ(θ) ||p(θ)) + 〈ln p(xi|θ)〉qξ(θ)

)
≡

N∑
i=1

Li(qξ)

where 〈〉qξ(θ) is an expectation taken w.r.t. qξ(θ).

ADVI [5]
I Constrained variables are transformed into unconstrained ones and their

posterior is approximated by Gaussian variational distributions
I Does not need conjugacy, optimizes the ELBO using stochastic gradient

ascent (SGA)
I Provides a unified methodology for a broad range of models

DP-ADVI
I Each g(xi) = ∇ξLi(qξ) is clipped s.t. ||g(xi)||2 ≤ ct in order to calculate gradient sensitivity
I Subsampling with frequency q in order to use the privacy amplification theorem
I Gradient contributions from all data samples in the mini batch are summed and perturbed

with Gaussian noise N (0,4c2
t σ

2
δ I)

I Incorporated into the ADVI implementation in PyMC3.

Calculating the privacy budget [1]
I σδ determines the total εtot and depends on total δtot

I Setting δsubs = (δtot − δ′)/Tq, define σδ via iteration-specific εsubs

σδ =
√

2 ln(1.25/(δsubs))/εsubs.

I Clipping makes `2 sensitivity of total gradient 2ct

I (εsubs, δsubs)-DP w.r.t. the subset is (log(1 + q(eεsubs − 1)),qδsubs)-DP w.r.t. whole data set.
I Total privacy cost εtot over T iterations is

εtot =
√

2T ln(1/δ′)εiter + T εiter(eεiter − 1),

with

εiter = log(1 + q
(

exp(
√

2 ln(1.25/δsubs)/σδ)− 1
)

)

where δ′ comes from advanced composition

Experiments: Logistic regression

I Bayesian logistic regression model

P(y |x,w) = σ(ywTx)

p(w) = N(w; w0,S0),

where σ(x) = 1/(1 + exp(−x)).
I We take no prior on the covariance matrix S0 which is fixed to

S0 = Id
I Approximate p(w|X,Y ) with q(w) which is multivariate normal with

mean mN and covariance SN
I We use SN = σId (mean-field), it is possible to use full covariance,

but DP introduces a new accuracy tradeoff
I Abalone data set from the UCI Machine Learning Repository (4177

samples, 8 features, 2 classes)
I The classifier was trained using 80% of the data using SGA with

sampling ratio q = 0.02.
I Before training, data are z-normalised
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Figure: Accuracy vs. total ε in Abalone data for (a) different clipping threshold values (b) different SGA
sample sizes. The curves show the mean of 10 runs of the DP-ADVI algorithm with error bars denoting
the standard error of the mean.
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