Scalable Inference in Dynamic Mixture Models

Patrick Jähnichen, Florian Wenzel and Marius Kloft

Machine Learning Group Department of Computer Science

Humboldt-Universität zu Berlin, Germany

{patrick.jaehnichen, wenzelfl, kloft}@hu-berlin.de

Abstract

Previous work on inference for dynamic mixture models has so far been directed to models that follow a simple Brownian motion diffusion over time and pursued a batch inference approach. We generalize the underlying dynamics model to follow a Gaussian process, introducing a novel class of dynamic priors for mixture models. Further, we propose a stochastic variational inference scheme and compare our approach to previous solutions in terms of runtime and test error.

Introduction

• Dynamic mixture models are not as heavily used as their

Inference

Batch algorithm

Variational family

- Introduce variational distributions on hidden variables
- for all t = 1, ..., T set $q(\theta_t | \lambda_t) = \text{Dir}_L(\lambda_t)$
- for all n = 1, ..., N set $q(z_n | \phi_n) =$ Mult (ϕ_n)

- for all
$$l = 1, \ldots, L$$
 set $q(\beta_l) = \mathcal{N}_T(m_l, S_l)$

• Variational distribution factorizes completely, save $\beta_{l,1:T}$

- static counterparts in spite of their ability to capture higher complexity in the data
- Dynamics in mixture models allow us to keep track of mixture components that are subject to a drift
- Stock market data analysis
- Time-stamped document collections (i.e. dynamic topic models)
- Weather forecasting
- Our approach: model the underlying dynamics via Gaussian processes (GPs)
- Opens up for a wide range of dynamic priors in mixture models and models of mixed membership
- Includes "classical" case of Brownian motion
- Ornstein-Uhlenbeck process (the continuous AR(1) model)
- Periodic process priors
- We develop a scalable inference method for this new model class

Standard Dynamic Mixture Models

Generative process

1. for all l = 1, ..., L(a) draw $\beta_{l,0} \sim \mathcal{N}(\mu_0, \sigma_0^2)$ (b) for all $t = 1, \ldots, T$ draw $\beta_{l,t} \sim \mathcal{N}(\beta_{l,t-1}, \nu^2 \Delta_{t,t-1})$ 2. for all $t = 1, \ldots, T$ draw $\theta_t \sim \text{Dir}_L(\alpha)$ 3. for all n = 1, ..., N(a) draw a component: $z_n \sim \text{Mult}(\theta_{t_n})$

Parameter updates

$$\phi_{nl} \propto \exp\left\{\psi(\lambda_{t_n,l}) - \psi\left(\sum_{l'}\lambda_{t_n,l'}\right)\right.\\\left. - \frac{1}{2\sigma_X^2}\left((x_n - m_l^{t_n})^T(x_n - m_l^{t_n}) + D(S_l)_{t_n,t_n}\right)\right\}$$
$$\lambda_{tl} = \alpha + \sum_n \mathbb{1}_{[t=t_n]}\phi_{nl}$$
$$m_l = \left(K_{TT}^{-1} + \frac{1}{2\sigma_X^2}\Phi_l\right)^{-1}\frac{1}{2\sigma_X^2}\Xi_l, \quad S_l = \left(K_{TT}^{-1} + \Phi_l\right)^{-1}$$

- K_{TT} is the covariance function evaluated on all observed time stamps
- $\mathbb{1}_{[.]}$ is the indicator function
- Φ_l and Ξ_l are the sufficient statistics to the variational distribution on β_l
- $-\Phi_l$ is a diagonal $T \times T$ -matrix with $(\Phi_l)_{t,t} = \sum_n \mathbb{1}_{[t=t_n]} \phi_{nl}$ $-\Xi_l$ is a $T \times D$ -matrix with the *t*-th row being $\sum_{n} \mathbb{1}_{[t=t_n]} \phi_{nl} x_n^T$

Scalable algorithm

Low-rank inducing point model

- Utilize stochastic variational inference on a lower-rank model using inducing points [2]
- Consider a set of inducing variables, $\hat{\beta}$ at inducing locations $z = \{z_i\}_{i=1}^{I}$ with I < T
- Let $\hat{\beta} \sim \mathcal{GP}(0, K_{II})$ be a lower-rank GP prior

Results

• Evaluation on two artificial data sets

- -Simple model: T = 10, D = 5, L = 5
- -Complex model: T = 100, D = 50, L = 25
- $-N \in \{1000, 5000, 10.000, 50.000, 100.000, 500.000\}$
- Number of inducing point for SVI approach is fixed to I = 10
- VKF and batch GP algorithm perform similar, latter is clearly faster
- Scalable GP algorithm slightly less accurate in predictive quality for simpler problem
- For increasing model complexity, batch GP approach still much faster than VKF, but SVI approach benefits from lowerrank approximation and reaching optimum after seeing less data points

Fig. 3: Test error statistics. Left:

(b) draw data $x_n \sim \mathcal{N}(\beta_{z_n, t_n}, \sigma_X^2 \mathbf{I})$,

- Mixture model of L D-dimensional jointly Gaussian time series of length T in the spirit of [4]
- Time series dynamics governed by a first order Markov chain
- $\beta_{l,t}$ is mixture components l at time t
- θ_t denotes the prior over mixing proportions for each data point at time t
- t_n is the observed time-stamp associated with observation x_n
- σ_X^2 is the data variance parameter
- Identical to assuming Brownian motion diffusion through time on mixture components with variance parameter ν^2
- State-of-the-art variational inference method is Variational Kalman Filtering (VKF) as introduced in [1]

GP Dynamic Mixture Models

• Approximate full-rank GP using $\hat{\beta}$

$$p(\beta^{(l)}|\hat{\beta}^{(l)}) = \mathcal{N}(K_{TI}K_{II}^{-1}\hat{\beta}^{(l)}, \tilde{K})$$

- K_{II} is the inducing point covariance matrix
- K_{TI} is the cross-covariance between data points and inducing points
- $\bullet \tilde{K} = K_{TT} K_{TI}K_{II}^{-1}K_{IT}$
- Introduce variational distribution on $\hat{\beta}$, $q(\hat{\beta}) = \prod_i \mathcal{N}(\hat{\beta}^{(i)} | m_i, S_i)$
- Apply Jensen's inequality on data likelihood $p(x_n|z_n, t_n, \beta)$

$$\log p(x_n | z_n = l, t_n, \hat{\beta}) = \log \mathbb{E}_{p(\beta | \hat{\beta})} \left[p(x_n | z_n, t_n, \beta) \right]$$

$$\geq \mathbb{E}_{p(\beta | \hat{\beta})} \left[\log p(x_n | z_n, t_n, \beta) \right]$$

$$= \log \mathcal{N}(k_{t_n, I} K_{II}^{-1} \hat{\beta}^{(z_n)}, \sigma_X^2) - \frac{1}{2\sigma_X^2} \tilde{k}_{t_n, t_n}$$

$$\triangleq \mathcal{L}_1$$

- $k_{t_n,I}$ is the t_n -th row of K_{TI}
- Final objective is now a lower bound to the "traditional" ELBO

$$\mathcal{L}_{2} = \mathbb{E}_{q} \left[\sum_{t} \left(\log p(\theta_{t} | \alpha) - \log q(\theta | \lambda) \right) + \sum_{n} \log p(z_{n} | \theta_{t_{n}}) - \log q(z_{n} | \phi_{n}) + \mathcal{L}_{1} + \log p(\hat{\beta}) - \log q(\hat{\beta}) \right]$$

Fig. 4: Computation time statistics.

Contribution

- Explore new kinds of dynamic priors for Bayesian dynamic mixture models and thereby study a new modeling class
- Opens up for utilizing well known dynamic priors in context of mixture models (e.g. the OU process)
- Propose a stochastic variational inference scheme and find that it performs superior to the VKF in terms of computation time making it applicable to huge data sets

Forthcoming Research

- Apply our findings to more complex models of mixed membership, especially dynamic topic models [4]
- Leads to scalable variational inference scheme for this model class and to possibility of incorporating broader range of prior assumptions on topic diffusion
- Place priors on hyperparameters to capture properties of dy-

- Time series dynamics now governed by a general Gaussian process
- β_l s are given by a T-dimensional zero-mean GP prior with kernel function $k(\cdot, \cdot)$ and associated covariance matrix K • Gives flexibility to easily employ different kernel functions and capture a wide range of dynamic behavior of the data
- Using the Wiener kernel function $(k(t_i, t_j) = \min(t_i, t_j))$ is identical to teh model above

Fig. 2: The GP dynamic mixture model.

• Proceed with stochastic variational inference (SVI) [3] scheme by randomly selecting minibatches S and optimizing \mathcal{L}_2 using noisy gradients

Parameter updates

$$\phi_{nl} \propto \exp\left\{\psi(\lambda_{t_n,l}) - \psi\left(\sum_{l'}\lambda_{t_n,l'}\right)\right\}$$
$$-\frac{1}{2\sigma_X^2}\left((x_n - \mu_{l,t_n})^T(x_n - \mu_{l,t_n}) + \operatorname{tr}(S_l\Lambda_{t_n}) + \tilde{k}_{t_n,t_n})\right)\right\}$$
$$\lambda_{t,l}^{(s+1)} = (1 - \rho_s)\lambda_{t,l}^{(s)} + \rho_s\left(\alpha + \frac{N}{|\mathcal{S}|}\sum_{n=1}^N \mathbb{1}_{[t=t_n]}\phi_{n,l}\right)$$

- $\Lambda_t = K_{II}^{-1} k_{I,t} k_{I,t}^T K_{II}^{-1}$
- $\Lambda = K_{II}^{-1} + \frac{1}{\sigma_v^2} \frac{N}{|\mathcal{S}|} \sum_t \sum_n \mathbb{1}_{[t=t_n]} \phi_{nl} \Lambda_t$
- Use exponential family property $\nabla_{\theta} \mathcal{L}(\theta) = \tilde{\nabla}_{\eta} \mathcal{L}(\eta)$ and update canonical parameters η

namic models, e.g. jumps, heteroscedasticity or stochastic volatility

References

- [1] David M Blei and John D Lafferty. Dynamic topic models. Proceedings of the 23rd International Conference on Machine Learning, 2006.
- [2] James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian Processes for Big Data. In Conference on Uncertainty in Artifical Intelligence, 2013.
- [3] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.
- [4] Chong Wang, David M Blei, and David Heckerman. Continuous Time Dynamic Topic Models. In Conference on Uncertainty in Artifical Intelligence, 2008.

Acknowledgements

We thank Stephan Mandt for fruitful discussions. This work was partly funded by the German Research Foundation (DFG) award KL 2698/2-1 and the German Ministry of Education and Research (BMBF) within the i:DSem research program, project PREDICT (031L0023A).