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Abstract
Previous work on inference for dynamic mixture models has so far

been directed to models that follow a simple Brownian motion diffu-
sion over time and pursued a batch inference approach. We generalize
the underlying dynamics model to follow a Gaussian process, intro-
ducing a novel class of dynamic priors for mixture models. Further,
we propose a stochastic variational inference scheme and compare our
approach to previous solutions in terms of runtime and test error.

Introduction
•Dynamic mixture models are not as heavily used as their

static counterparts in spite of their ability to capture higher
complexity in the data
•Dynamics in mixture models allow us to keep track of mix-

ture components that are subject to a drift
– Stock market data analysis
– Time-stamped document collections (i.e. dynamic topic

models)
– Weather forecasting
•Our approach: model the underlying dynamics via Gaussian

processes (GPs)
•Opens up for a wide range of dynamic priors in mixture mod-

els and models of mixed membership
– Includes “classical” case of Brownian motion
– Ornstein-Uhlenbeck process (the continuous AR(1) model)
– Periodic process priors
•We develop a scalable inference method for this new model

class

Standard Dynamic Mixture Models
Generative process
1. for all l = 1, . . . , L

(a) draw βl,0 ∼ N (µ0, σ
2
0)

(b) for all t = 1, . . . , T draw βl,t ∼ N (βl,t−1, ν
2∆t,t−1)

2. for all t = 1, . . . , T draw θt ∼ DirL(α)

3. for all n = 1, . . . , N

(a) draw a component: zn ∼ Mult(θtn)
(b) draw data xn ∼ N (βzn,tn, σ

2
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Fig. 1: A simple dynamic mixture model.

•Mixture model of L D-dimensional jointly Gaussian time se-
ries of length T in the spirit of [4]
• Time series dynamics governed by a first order Markov chain
• βl,t is mixture components l at time t
• θt denotes the prior over mixing proportions for each data

point at time t
• tn is the observed time-stamp associated with observation xn
• σ2

X is the data variance parameter
• Identical to assuming Brownian motion diffusion through

time on mixture components with variance parameter ν2

• State-of-the-art variational inference method is Variational
Kalman Filtering (VKF) as introduced in [1]

GP Dynamic Mixture Models
• Time series dynamics now governed by a general Gaussian

process
• βls are given by a T -dimensional zero-mean GP prior with

kernel function k(·, ·) and associated covariance matrix K
•Gives flexibility to easily employ different kernel functions

and capture a wide range of dynamic behavior of the data
•Using the Wiener kernel function (k(ti, tj) = min(ti, tj)) is

identical to teh model above
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Fig. 2: The GP dynamic mixture model.

Inference

Batch algorithm
Variational family
• Introduce variational distributions on hidden variables

– for all t = 1, . . . , T set q(θt|λt) = DirL(λt)

– for all n = 1, . . . , N set q(zn|φn) = Mult(φn)

– for all l = 1, . . . , L set q(βl) = NT (ml, Sl)

•Variational distribution factorizes completely, save βl,1:T

Parameter updates

φnl ∝ exp

{
ψ(λtn,l)− ψ

(∑
l′

λtn,l′

)

− 1

2σ2X

(
(xn −mtn

l )T (xn −mtn
l ) + D(Sl)tn,tn

)}
λtl = α +

∑
n

1[t=tn]φnl

ml =

(
K−1TT +

1

2σ2X
Φl

)−1
1

2σ2X
Ξl, Sl =

(
K−1TT + Φl

)−1
•KTT is the covariance function evaluated on all observed time

stamps

• 1[·] is the indicator function

• Φl and Ξl are the sufficient statistics to the variational distri-
bution on βl
– Φl is a diagonal T ×T -matrix with (Φl)t,t =

∑
n 1[t=tn]φnl

– Ξl is a T × D-matrix with the t-th row being∑
n 1[t=tn]φnlx

T
n

Scalable algorithm
Low-rank inducing point model
•Utilize stochastic variational inference on a lower-rank model

using inducing points [2]

• Consider a set of inducing variables, β̂ at inducing locations
z = {zi}Ii=1 with I < T

• Let β̂ ∼ GP(0, KII) be a lower-rank GP prior

•Approximate full-rank GP using β̂

p(β(l)|β̂(l)) = N (KTIK
−1
II β̂

(l), K̃)

•KII is the inducing point covariance matrix

•KTI is the cross-covariance between data points and inducing
points

• K̃ = KTT −KTIK
−1
II KIT

• Introduce variational distribution on β̂,
q(β̂) =

∏
iN (β̂(i)|mi, Si)

•Apply Jensen’s inequality on data likelihood p(xn|zn, tn, β)

log p(xn|zn = l, tn, β̂) = logE
p(β|β̂)

[p(xn|zn, tn, β)]

≥ E
p(β|β̂)

[log p(xn|zn, tn, β)]

= logN (ktn,IK
−1
II β̂

(zn), σ2
X)− 1

2σ2
X

k̃tn,tn

, L1

• ktn,I is the tn-th row of KTI

• Final objective is now a lower bound to the “traditional”
ELBO

L2 = Eq

[∑
t

(log p(θt|α)− log q(θ|λ))

+
∑
n

log p(zn|θtn)− log q(zn|φn)

+ L1 + log p(β̂)− log q(β̂)
]

• Proceed with stochastic variational inference (SVI) [3]
scheme by randomly selecting minibatches S and optimizing
L2 using noisy gradients

Parameter updates

φnl ∝ exp

{
ψ(λtn,l)− ψ

(∑
l′

λtn,l′

)

− 1

2σ2X

(
(xn − µl,tn)T (xn − µl,tn) + tr(SlΛtn) + k̃tn,tn)

)}
λ
(s+1)
t,l = (1− ρs)λ(s)t,l + ρs

(
α +

N

|S|

N∑
n=1

1[t=tn]φn,l

)

• Λt = K−1
II kI,tk

T
I,tK

−1
II

• Λ = K−1
II + 1

σ2X

N
|S|
∑
t
∑
n 1[t=tn]φnlΛt

•Use exponential family property ∇θL(θ) = ∇̃ηL(η) and up-
date canonical parameters η

∂̃L2

∂η
(1)
l

=
∂L2

∂ml
=
N

|S|
∑
n

1[t=tn]φnlK
−1
II kI,tnxn − Λml

∂̃L2

∂η
(2)
l

=
∂L2

∂Sl
=

1

2
S−1
l −

1

2
Λ

η
(1)(s+1)
l = η

(1)(s)
l + ρs

∂̃L2

∂η
(1)
l

η
(2)(s+1)
l = η

(2)(s)
l + ρs

∂̃L2

∂η
(2)
l

Results
• Evaluation on two artificial data sets

– Simple model: T = 10, D = 5, L = 5

– Complex model: T = 100, D = 50, L = 25

–N ∈ {1000, 5000, 10.000, 50.000, 100.000, 500.000}
•Number of inducing point for SVI approach is fixed to I = 10

•VKF and batch GP algorithm perform similar, latter is clearly
faster
• Scalable GP algorithm slightly less accurate in predictive

quality for simpler problem
• For increasing model complexity, batch GP approach still

much faster than VKF, but SVI approach benefits from lower-
rank approximation and reaching optimum after seeing less
data points
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Fig. 3: Test error statistics. Left:
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Fig. 4: Computation time statistics.

Contribution
• Explore new kinds of dynamic priors for Bayesian dynamic

mixture models and thereby study a new modeling class
•Opens up for utilizing well known dynamic priors in context

of mixture models (e.g. the OU process)
• Propose a stochastic variational inference scheme and find

that it performs superior to the VKF in terms of computation
time making it applicable to huge data sets

Forthcoming Research
•Apply our findings to more complex models of mixed mem-

bership, especially dynamic topic models [4]
• Leads to scalable variational inference scheme for this model

class and to possibility of incorporating broader range of prior
assumptions on topic diffusion
• Place priors on hyperparameters to capture properties of dy-

namic models, e.g. jumps, heteroscedasticity or stochastic
volatility
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