
We fit basic variational autoencoder models with 2, 10, and 20 latent dimensions to 
a binarized 60000-image MNIST dataset, computed the average KL divergence 
from eq. 7, estimated term 3 by Monte Carlo, and estimated term 2 by subtracting 
our estimate of term 2 from the average KL. The results are plotted below.

We see that, for non-trivial latent spaces, term 2 (the mutual information between z 
and n) approaches its maximum value of log N. We also see that term 3 (the 
marginal KL) makes a significant contribution to the ELBO, confirming that a 
simple encoder-decoder model has a hard time matching the marginal q(z) to p(z).

• The results above suggest that deep latent Gaussian models have a hard time 
producing unimodal marginal posteriors. Perhaps we should investigate learning 
multimodal priors for p(z) that meet q(z) halfway?

• We could set p(z) = q(z), but this choice is computationally impractical for large 
datasets, and may overfit badly. What’s the right level of power for p(z)?

• DLGMs are powerful density estimators. Shouldn’t a deeper DLGM be able to 
match q(z)?

• This analysis also applies to the non-variational case where q(z | n) = p(z | xn). 
What can this analysis tell us about latent-variable density estimation in general?

• Do the marginal posteriors of classical models (e.g., factor analysis) and more 
powerful flat models (e.g., mixtures of factor analyzers, latent Dirichlet allocation) 
do a better or worse job of matching their priors?

The three terms above encode three desiderata:

Term 1: This is a traditional autoencoder objective, which encourages accurate 
reconstructions of x given z.
Term 2: This is the (negative) mutual information between z and the index n. It 
penalizes models in which we can determine which observations x are consistent 
with which z vectors.
Term 3: This is the (negative) KL divergence between the average encoding 
distribution and the prior.

This decomposition sheds some new light on what the ELBO cares about:

• Terms 1 and 2 are in tension. To make term 1 large, we want z to tell us almost 
everything there is to know about x. But that often requires that n and z have high 
mutual information.

• Term 2 is bounded above and below: 
In the case where reconstructions are very precise, we should expect term 2 to be 
near its maximum value of log N.

• p(z) only appears in term 3, and term 3 can in principle be set to 0 for any model 
by setting p(z) = q(z). This may be impractical or unwise, but it does imply that… 

• When term 3 is large, our choice of prior p(z) is regularizing our model (whether 
or not we want it to).
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3 Qualitative perspectives

We can make several observations about the ELBO expression given in (17). First, the two terms 1
and 2 are in tension with each other because to get a good average reconstruction score for 1 , we
typically need each encoding z

n

to be specific to its corresponding observation x

n

and hence q(n | z)
should have low entropy. Term 2 acts as a regularizer, in that it encourages the encodings q(z |x
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to overlap for distinct observations n, but this effect is likely to be weak relative to the reconstruction
term 1 . Interestingly, 2 is bounded above and below, because

0  logN � E
q(z)H[q(n | z)]  logN. (18)

Empirically, we have found that reconstructions are very precise and, correspondingly, q(z |n) is
very concentrated relative to q(z), resulting in 2 is close to its maximum value of logN .

Second, while q(z) appears in all terms, p(z) only appears in 3 . Thus when considering choosing
priors p(z) to optimize the ELBO, only this term is affected. Observe that we could set 3 to zero
without sacrificing model power by simply defining the prior to be q(z). This choice would not be
amenable to scalable computation because it is difficult to evaluate 2 in isolation: to normalize
q(n | z) at each evaluation requires accessing all N observations (and the normalization also precludes
us from making unbiased Monte Carlo estimates). Setting 3 to zero may also be undesirable due
to the potential for overfitting or the inability to use the prior to sculpt the latent representation [4].
Nevertheless, because 3 can in principle be set to zero, whenever it is large it indicates a very strong
and potentially unwanted regularization effect from the prior.

4 Basic empirical results

To get a sense for the new terms in (17), we fit a basic variational autoencoder to a binarized MNIST
dataset. The encoder and decoder each had two hidden layers with 500 units each and used softplus
nonlinearities, and we fit them using the Adam optimizer [5]. For more details, see the code.

After optimization, we estimated the marginal KL term 3 via Monte Carlo:
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References

ELBO Avg. KL Mutual info. 2 Marg. KL 3

2D latents -129.63 7.41 7.20 0.21

10D latents -88.95 19.17 10.82 8.35

20D latents -87.45 20.2 10.67 9.53

Table 1: Estimated values for ELBO terms on binarized MNIST. Note that the values in the average KL
column, which are computed as 1

N

P
n

KL(q(z

n

|x
n

) k p(z
n

)), equal the sum of the corresponding
mutual information and marginal KL terms.

for sample indices s = 1, 2, . . . , S, which requires total time proportional to NS to compute. We
also computed the average KL 1

N

P
N

n=1 KL(q(z

n

) k p(z
n

)) analytically in the usual way and hence
estimated the mutual information term 2 by subtraction. As shown in Table 1, while the marginal KL
term 3 could in principle be set to be very small, it still contributes to and significantly reduces the
ELBO value for nontrivial dimension sizes. We also see that for nontrivial dimension sizes the mutual
information term 2 is near its maximum value of logN ⇡ log(60000) < 11.0021, indicating that
the individual encoding distributions q(z |x

n

) do not have significant overlap.

These results confirm that our current encoder and decoder models (and optimizers) find it difficult
to match q(z) and p(z). This issue has also been observed by Makhzani et al. [6], who address it
by replacing the KL(q(z

n

) k p(z
n

)) term in the ELBO with an adversarial loss. But our theoretical
analysis suggests that we need not abandon the principle of maximum (marginal) likelihood; if
DLGMs find it difficult to produce unimodal Gaussian marginal posteriors, then perhaps we should
investigate multimodal priors that can meet q(z) halfway.

5 Conclusion

This new decomposition of the ELBO provides some new perspectives on the role of the prior and
the encoded data distribution. In particular, we split the average KL term of (7) into an index-code
mutual information term and a marginal KL term from the encoded data distribution to the prior,
as in (17). Evaluating these terms separately, we found that for nontrivial latent dimension sizes
the marginal KL term, while it could in principle could be made very small, has large detrimental
impact on the ELBO. In addition, we found that the mutual information term seems to be maximized,
which is consistent with intuition and suggests that to improve the ELBO value we should focus on
improving the marginal KL term. This new ELBO decomposition also provides a computational
diagnostic to evaluate when underfitting may be caused by a rigid prior that the encoder and decoder
are unable to match. In future work it may prove fruitful to investigate alternative, multimodal priors
that can “meet in the middle” with the encoder and decoder networks.
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Substituting this new KL expression into the ELBO (1), we have
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Consider the average encoding distribution,
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(z) k p(z)) can in

principle be made arbitrarily small, with q
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In practice, however, there may be large gaps or

holes in the average encoding distribution. The

cartoon at right shows one scenario where this

could happen. As the latent dimension grows,

we should expect it to get harder to fill up a

large spherical space with many small blobs, for

the same reason kernel density estimation scales

poorly with dimension.

The average encoding distribution is hidden in the ELBO. To simplify notation,
treat the index n as a random variable and define

q(n, z) , q(n)q(z |n), q(z |n) , q(z |xn), q(n) , 1
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where the first equality can be checked by expanding p(n, z) and q(n, z) and cancel-

ing the p(n) and q(n) factors, the second equality follows from the chain rule and

splitting the log, and the last line follows from using p(n) =
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Evidence minus posterior KL

L(✓,�) = log p✓(x)�KL(q�(z |x) k p✓(z |x))

Emphasizes that ELBO is a lower bound that becomes tighter as the variational
distribution better approximates the posterior.

Average negative energy plus entropy

L(✓,�) = Eq�(z |x)[log p✓(z,x)] +H[q�(z |x)]

Emphasizes that, unlike maximum a posteriori (MAP), a good posterior approx-

imation must not only assign its probability mass to regions of low energy (high

joint probability) but also try to maximize the entropy of q�(z |x).

Average term-by-term reconstruction minus KL to prior
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Emphasizes that the ELBO has an autoencoder’s average reconstruction term as
well as a KL divergence from each encoding distribution to the prior.

We can rewrite the KL to the prior in (1) as
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where Iq(n,z)[n, z] denotes the mutual information of n and z in q(n, z).

We’re interested in variational EM in models of the form
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