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We're interested in variational EM in models of the form
po(x) = /pe(il? | z)p(z) d=.

Fit by maximizing log evidence lower bound (ELBO) L,

log pg(x) = log/q¢(z | x)

po(z,x)
qs(z | )

dz > Eq¢(z|m) log SQ(Z’Z) L E(H,qb)

Graphical Model:

N g6(z @) = || q(zn | zn).

Existing Perspectives on the ELBO

Evidence minus posterior KL

L(0,¢) =logpg(x) — KL(qs(z | x) || pe(z | x))

Emphasizes that ELBO is a lower bound that becomes tighter as the variational
distribution better approximates the posterior.

Average negative energy plus entropy

L(O0,9) =Eq,(z|x)llogpe(z, )] + Hgy(2 | x)]

Emphasizes that, unlike maximum a posteriori (MAP), a good posterior approx-
imation must not only assign its probability mass to regions of low energy (high
joint probability) but also try to maximize the entropy of q4(z | ).

Average term-by-term reconstruction minus KL to prior

(‘9 gb Z Eq¢(zn | z,,) [1ng9(33n ’ Zn)] — KL(q¢5(zn ’ wn) H p(Zn)) (1)

n=1

Emphasizes that the ELBO has an autoencoder’s average reconstruction term as
well as a KL divergence from each encoding distribution to the prior.

The Average Encoding Distribution

Consider the average encoding distribution,

avg Z qu ’ mn

We would expect that if x, ~ po(z) and q4(2 | zn) =~ pe(z |y ), then for large NV,

Indeed, unlike KL(q(z, | z,) || p(z,)), the margmal KL KL(q; ®(2) | p(2)) can in
principle be made arbitrarily small, with ¢/ (b 5(2) = p(2).

In practice, however, there may be large gaps or
holes in the average encoding distribution. The
cartoon at right shows one scenario where this
could happen. As the latent dimension grows,

we should expect it to get harder to fill up a

large spherical space with many small blobs, for O
the same reason kernel density estimation scales Q

p(z) = / po(z | 2)pe(x) dz = By, (1P

poorly with dimension.
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A New Rewrite of the ELBO

The average encoding distribution is hidden in the ELBO. To simplify notation,
treat the index n as a random variable and define

q(n,z) = q(n)q(z | n), a(z|n) = q(z| ), q(n) =
p(n,2) £ p(n)p(z|n), p(z|n) = p(2), p(n) =
Note that ¢*V&(z) = ij:l q(z,n).

We can rewrite the KL to the prior in (1) as

% Z 1(zn | 20) | P(2n)) = KL(q(2) || p(2)) + (log N — Eq(:)[Hlg(n | 2)]])

= KL(q(2) [| p(2)) 4 Ig(n,2) |7, 2],

where I, ,)|n, 2| denotes the mutual information of n and z in g(n, 2).

To check this expression, write

1 N

ZKL(Q(Z) p(z)
= KL(q(2) || p(2)

) + Eq2)[KL(g(n | 2) [| p(n))]
) T (log N — IEEq(z) [H[q(n ‘ Z)H) 3

where the first equality can be checked by expanding p(n, z) and q(n, z) and cancel-

ing the p(n) and q(n) factors, the second equality follows from the chain rule and

1

splitting the log, and the last line follows from using p(n) = .

Substituting this new KL expression into the ELBO (1), we have

£0.0) = | 5 3 Eaey 210800 | 20)] | — (lo8 N — Eq(o[Hlg(n | 2)])) — KL(a(2) |p(2)) -

_J/

n=1 e

\ . _J/

@ marginal KL to prior

v @ index-code mutual info.
@ average reconstruction

We fit basic variational autoencoder models with 2, 10, and 20 latent dimensions to
a binarized 60000-image MNIST dataset, computed the average KL divergence
from eq. 7, estimated term 3 by Monte Carlo, and estimated term 2 by subtracting
our estimate of term 2 from the average KL. The results are plotted below.

We see that, for non-trivial latent spaces, term 2 (the mutual information between z
and n) approaches its maximum value of log N. We also see that term 3 (the
marginal KL) makes a significant contribution to the ELBO, confirming that a
simple encoder-decoder model has a hard time matching the marginal g(z) to p(z).
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The three terms above encode three desiderata:

Term 1: This 1s a traditional autoencoder objective, which encourages accurate
reconstructions of x given z.

Term 2: This 1s the (negative) mutual information between z and the index n. It
penalizes models 1n which we can determine which observations x are consistent
with which z vectors.

Term 3: This 1s the (negative) KL divergence between the average encoding
distribution and the prior.

This decomposition sheds some new light on what the ELBO cares about:

* Terms 1 and 2 are in tension. To make term 1 large, we want z to tell us almost
everything there i1s to know about x. But that often requires that » and z have high
mutual information.

* Term 2 1s bounded above and below: 0 <log N — E,,yH[g(n | z)] < log N
In the case where reconstructions are very precise, we should expect term 2 to be
near 1ts maximum value of log V.

* p(z) only appears in term 3, and term 3 can 1n principle be set to 0 for any model
by setting p(z) = g(z). This may be impractical or unwise, but it does imply that...

 When term 3 1s large, our choice of prior p(z) is regularizing our model (whether
or not we want it to).

Food for Thought

* The results above suggest that deep latent Gaussian models have a hard time
producing unimodal marginal posteriors. Perhaps we should investigate learning
multimodal priors for p(z) that meet g(z) halfway?

* We could set p(z) = g(z), but this choice 1s computationally impractical for large
datasets, and may overfit badly. What’s the right level of power for p(z)?

« DLGMs are powerful density estimators. Shouldn’t a deeper DLGM be able to
match g(z)?

* This analysis also applies to the non-variational case where ¢(z | n) = p(z | x,).
What can this analysis tell us about latent-variable density estimation in general?

* Do the marginal posteriors of classical models (e.g., factor analysis) and more
powerful flat models (e.g., mixtures of factor analyzers, latent Dirichlet allocation)
do a better or worse job of matching their priors?
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