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Overview

Black-box Bayesian inference is hard:

« MCMC can be slow.

= Variational inference can be inaccurate.
Boosting Variational Inference:

« Fast: optimization-based

- Nonparametric & Adaptive: iteratively
improves by adapting to residual

Variational Bayes

Variational Bayes approximates true posterior
p(@|X) within the closest ¢(6) within a fam-
ily of distributions H, in terms of discrepancy
measure D between the two distributigaps.

01,
q* = argminD(q(0), p(0]| X)) < q@q,m
qEH H

Kullback-Leibler (KL) divergence is often
used as discrepancy measure (f = 7(0)p(X|0))

Dig.p) = Duclallp) = [ a(®)low 728

= const + /qlog(q/f)d@.

Limitations of current VB:

« Point estimates: often good, can be biased

« Poor uncertainty estimates: covariance,
multimodality

= Cannot improve accuracy given more time

VB Approximation Family

Accuracy of VB is mainly limited by the inflex-
ibility of approximation family.

oMean-field ¢q(0) = 11, ¢;(0;)
@ Full-rank Gaussian
Hi={h:h0)=N,x(0)}

o Mixture of k£ Gaussians
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o Our choice: All finite Gaussian mixtures
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Greedy Boosting

Want to construct a sequence of approximations
q:(0) € H; such that as t — oo

AD(q;) == D(qt,p) — qig{fm@(q,p) N\ 0.

Greedy Boosting Algorithm

o Start with ¢; € H;.
® T hen iteratively fort = 2,3, ---, we let

g = (1 — ) qi—1 + ay hy
such that for some ¢; \, 0,
D(Qt;p) < lﬂf

B hEH1,0§a§1

However, optimization (x) is non-convex.

Our Algorithm

Two-step approach for Greedy Boosting ().
Step 1: Gradient Boosting: Dist. iy,
Friedman, (2001) proposed identifying the form
of h; with the gradient information when in-
crement is small.

For Dk, the negative functional gradient is
the residual of log posterior density:

_VﬁKL(Qt—l) = log(f(0)/q:-1(6)).

To minimize KL, we match h; to —V 75K_(qt_1):
h, = argmin ||c- h — log(f/q_1)]|>.
heH, c>0

With Laplacian approximation to the residual, we

have a simple algorithm for quickly identifying
h,, s, using optimization. We have closed-form

solutions:
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Step 2: Stochastic Newton’s: Weight «;
Fixing h;, determining corresponding weight

;= 1Min ijL((l — CV)C]t—l + Oéht)

0<a<l]
is convex. Further, by drawing samples from
q;—1 and h;, we can get Monte Carlo esti-
mates of derivatives D, and D, .

D((1=a)g—1tah, p)+e. (+)
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Theoretical Results

From Zhang, (2003), for greedy boosting, if
D(q,p) is (1) convex in ¢ and (2) strongly
smooth in g, then we have

AD(q;) — 0 at rate O(1/t).

In Theorem 1, we showed that under mild con-
ditions (e.g., that hold on a bounded set) Dk
satisfies these conditions.

Simulation Experiments
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Figure 1: True: Heavy-tailed Cauchy
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Figure 2: True: Mixture of univariate Gaussians

Logistic Regression Experiment

We run Bayesian logistic regression on the
Nodal dataset, consisting of NV = 53 observa-
tions of d = 0 predictors x; and a binary re-
sponse 1; € {—1,+1}. We compare to MCMC
(as truth) and mean-field VB.
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Figure 3: Bayesian logistic regression
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