

Boosting Variational Inference

Richard (Fangjian) Guo*, Xiangyu Wang[†], Kai Fan[†], Tamara Broderick*, David B. Dunson[†]

*Massachusetts Institute of Technology, †Duke University

arXiv:1611.05559

Overview

Black-box Bayesian inference is hard:

- MCMC can be slow.
- Variational inference can be inaccurate.

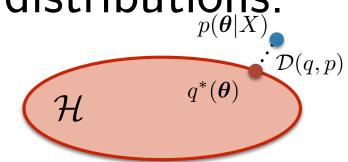
Boosting Variational Inference:

- Fast: optimization-based
- Nonparametric & Adaptive: iteratively improves by adapting to residual

Variational Bayes

Variational Bayes approximates true posterior $p(\boldsymbol{\theta}|X)$ within the closest $q(\boldsymbol{\theta})$ within a family of distributions \mathcal{H} , in terms of discrepancy measure \mathcal{D} between the two distributions.

$$q^* = \underset{q \in \mathcal{H}}{\arg\min} \, \mathcal{D}(q(\boldsymbol{\theta}), p(\boldsymbol{\theta}|X))$$



Kullback-Leibler (KL) divergence is often used as discrepancy measure $(f = \pi(\theta)p(X|\theta))$

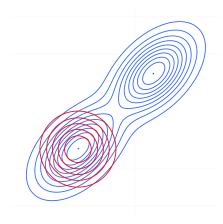
$$\mathcal{D}(q, p) := \mathcal{D}_{\mathsf{KL}}(q \| p) = \int q(\boldsymbol{\theta}) \log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}|X)} d\boldsymbol{\theta}$$
$$= \mathsf{const} + \int q \log(q/f) d\boldsymbol{\theta}.$$

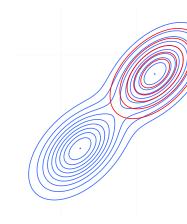
Limitations of current VB:

- Point estimates: often good, can be biased
- Poor uncertainty estimates: covariance, multimodality
- Cannot improve accuracy given more time

VB Approximation Family

Accuracy of VB is *mainly* limited by the **inflex-ibility of approximation family**.





- $oldsymbol{\bullet}$ Mean-field $q(oldsymbol{ heta}) = \Pi_i \, q_i(heta_i)$
- Full-rank Gaussian

$$\mathcal{H}_1 = \{h : h(\boldsymbol{\theta}) = \mathcal{N}_{\boldsymbol{\mu}, \boldsymbol{\Sigma}}(\boldsymbol{\theta})\}$$

$$\mathcal{H}_k = \{h : h(\boldsymbol{\theta}) = \sum_{j=1}^k w_j \mathcal{N}_{\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j}(\boldsymbol{\theta}), \boldsymbol{w} \in \Delta_k \}$$

Our choice: All finite Gaussian mixtures

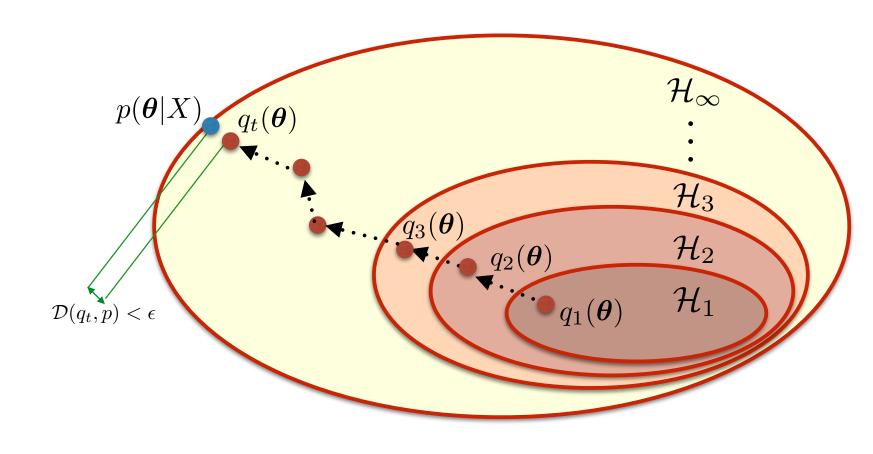
$$\mathcal{H}_{\infty} = igcup_{k=1}^{\infty} \mathcal{H}_k$$

Family	Covariance	Multimodality	Arbitrary
			approximation
Mean-field	X	X	X
Full-rank $\mathcal{N}_{oldsymbol{\mu},oldsymbol{\Sigma}}$		X	×
\mathcal{H}_k			X
\mathcal{H}_{∞}			

Greedy Boosting

Want to construct a sequence of approximations $q_t(\boldsymbol{\theta}) \in \mathcal{H}_t$ such that as $t \to \infty$

$$\Delta \mathcal{D}(q_t) := \mathcal{D}(q_t, p) - \inf_{q \in \mathcal{H}_{\infty}} \mathcal{D}(q, p) \searrow 0.$$



Greedy Boosting Algorithm

- •Start with $q_1 \in \mathcal{H}_1$.
- **2** Then iteratively for $t=2,3,\cdots$, we let

$$q_t = (1 - \alpha_t) \ q_{t-1} + \alpha_t \ h_t$$

such that for some $\epsilon_t \searrow 0$,

$$\mathcal{D}(q_t, p) \leq \inf_{h \in \mathcal{H}_1, 0 \leq \alpha \leq 1} \mathcal{D}((1-\alpha)q_{t-1} + \alpha h, p) + \epsilon_t. (*)$$

However, optimization (*) is non-convex.

Our Algorithm

Two-step approach for *Greedy Boosting* (*). Step 1: Gradient Boosting: Dist. h_t

Friedman, (2001) proposed identifying the form of h_t with the **gradient information** when **increment is small**.

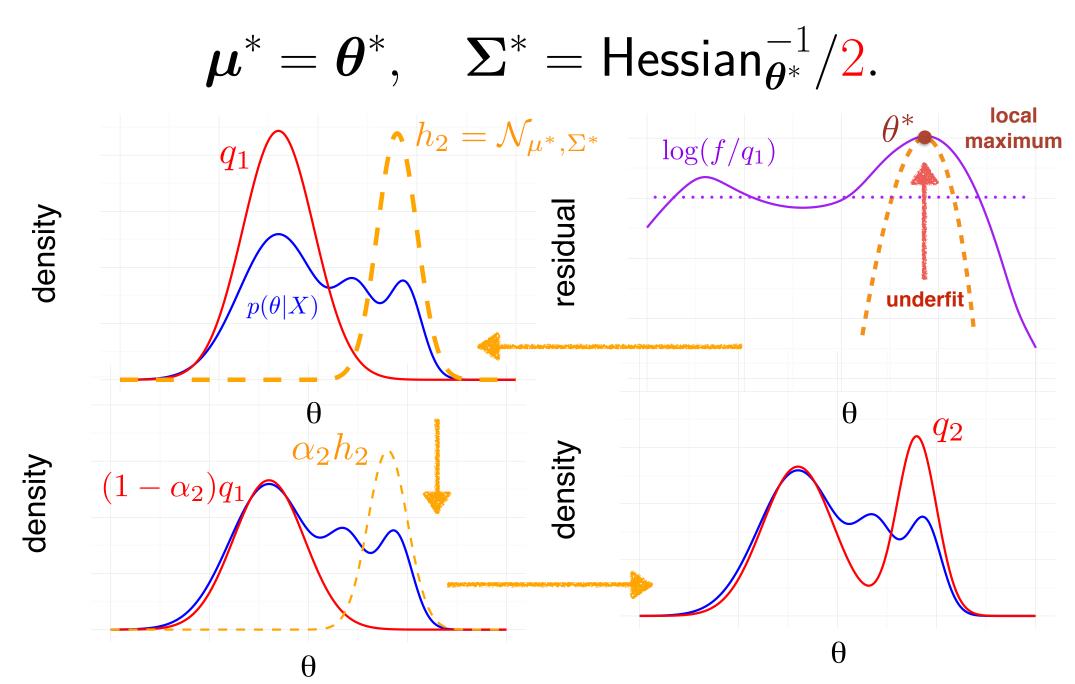
For \mathcal{D}_{KL} , the negative functional gradient is the residual of log posterior density:

$$-\nabla \mathcal{D}_{\mathsf{KL}}(q_{t-1}) = \log(f(\boldsymbol{\theta})/q_{t-1}(\boldsymbol{\theta})).$$

To minimize KL, we match h_t to $-\nabla \tilde{\mathcal{D}}_{\mathsf{KL}}(q_{t-1})$:

$$\hat{h}_t = \underset{h \in \mathcal{H}_1, c > 0}{\arg \min} \|c \cdot h - \log(f/q_{t-1})\|_2^2.$$

With Laplacian approximation to the residual, we have a simple algorithm for quickly identifying \hat{h}_{μ_t,Σ_t} using optimization. We have closed-form solutions:



Step 2: Stochastic Newton's: Weight α_t Fixing h_t , determining corresponding weight

$$\alpha_t = \min_{0 \le \alpha \le 1} \tilde{\mathcal{D}}_{\mathsf{KL}}((1 - \alpha)q_{t-1} + \alpha h_t)$$

is **convex**. Further, by drawing samples from q_{t-1} and h_t , we can get **Monte Carlo estimates** of derivatives $\hat{\mathcal{D}}'_{\mathsf{KL}}$ and $\hat{\mathcal{D}}''_{\mathsf{KL}}$.

Theoretical Results

From Zhang, (2003), for greedy boosting, if $\mathcal{D}(q,p)$ is (1) **convex** in q and (2) **strongly smooth** in q, then we have

$$\Delta \mathcal{D}(q_t) \to 0$$
 at rate $O(1/t)$.

In **Theorem** 1, we showed that under mild conditions (e.g., that hold on a bounded set) \mathcal{D}_{KL} satisfies these conditions.

Simulation Experiments

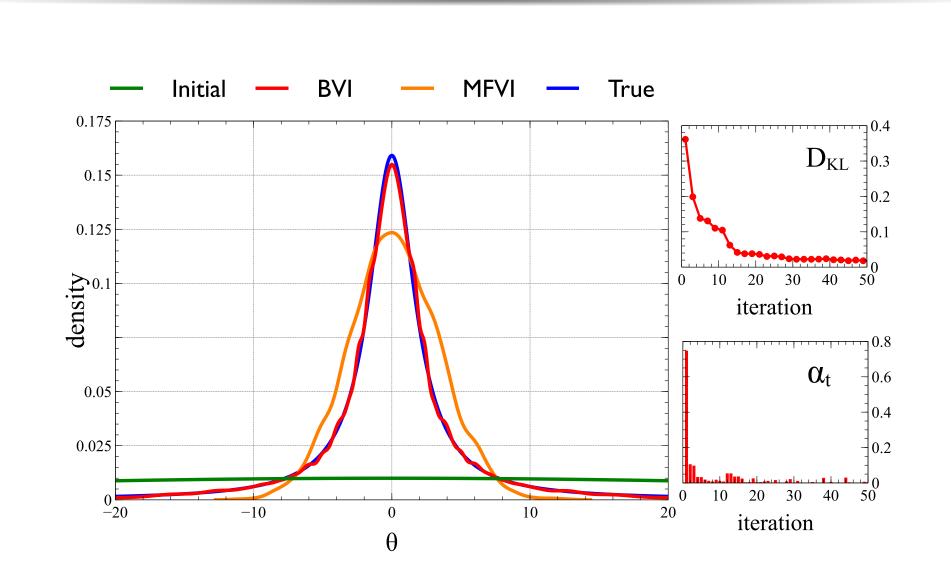


Figure 1: True: Heavy-tailed Cauchy

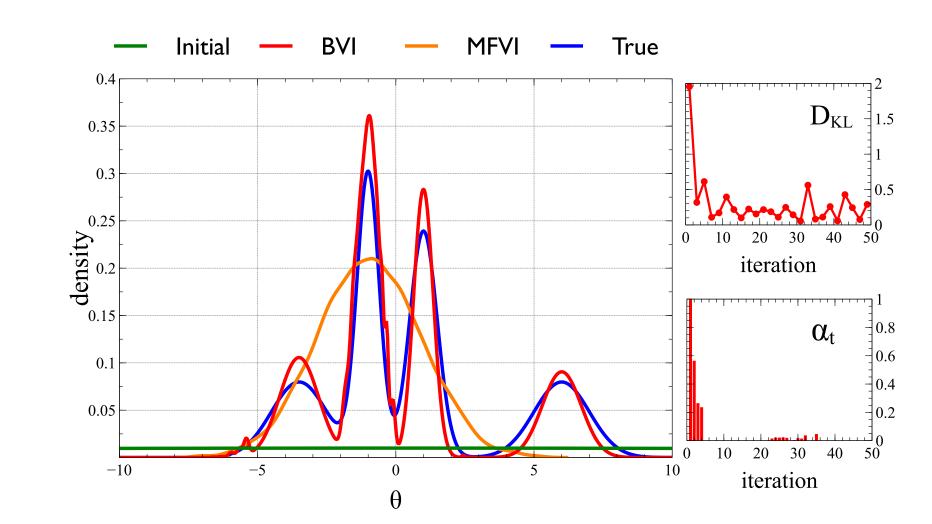


Figure 2: True: Mixture of univariate Gaussians

Logistic Regression Experiment

We run Bayesian logistic regression on the Nodal dataset, consisting of N=53 observations of d=6 predictors \boldsymbol{x}_i and a binary response $y_i \in \{-1,+1\}$. We compare to MCMC (as truth) and mean-field VB.

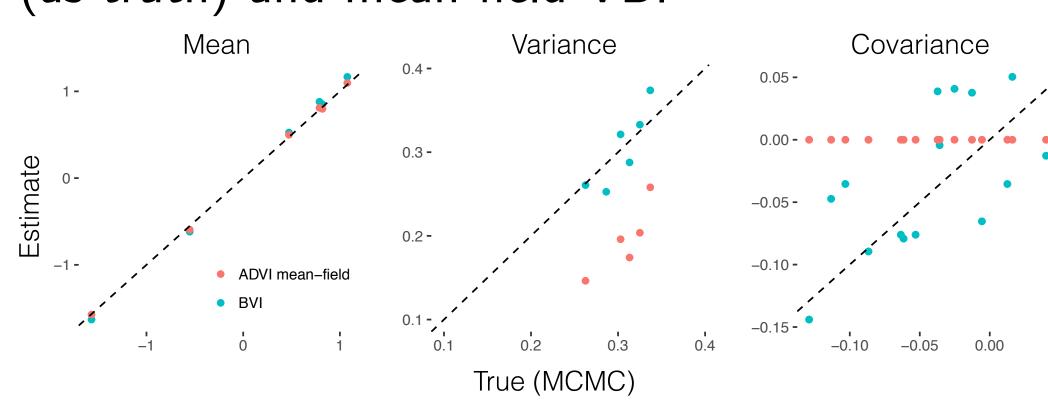


Figure 3: Bayesian logistic regression

References

Friedman, Jerome H (2001). "Greedy function approximation: a gradient boosting machine". In: *Annals of statistics*, pp. 1189–1232.

Zhang, Tong (2003). "Sequential greedy approximation for certain convex optimization problems". In: *IEEE Transactions on Information Theory* 49.3, pp. 682–691.