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Overview
Black-box Bayesian inference is hard:
•MCMC can be slow.
•Variational inference can be inaccurate.
Boosting Variational Inference:
•Fast: optimization-based
•Nonparametric & Adaptive: iteratively
improves by adapting to residual

Variational Bayes

Variational Bayes approximates true posterior
p(θ|X) within the closest q(θ) within a fam-
ily of distributions H, in terms of discrepancy
measure D between the two distributions.
q∗ = arg min

q∈H
D(q(θ), p(θ|X))

H

p(✓|X)

q⇤(✓)
D(q, p)

Kullback-Leibler (KL) divergence is often
used as discrepancy measure (f = π(θ)p(X|θ))

D(q, p) := DKL(q‖p) =
∫
q(θ) log q(θ)

p(θ|X)
dθ

= const +
∫
q log(q/f )dθ.

Limitations of current VB:
•Point estimates: often good, can be biased
•Poor uncertainty estimates: covariance,
multimodality

•Cannot improve accuracy given more time

VB Approximation Family

Accuracy of VB is mainly limited by the inflex-
ibility of approximation family.

1 Mean-field q(θ) = ∏
i qi(θi)

2 Full-rank Gaussian
H1 = {h : h(θ) = Nµ,Σ(θ)}

3 Mixture of k Gaussians
Hk = {h : h(θ) =

k∑
j=1

wjNµj,Σj
(θ),w ∈ ∆k}

4 Our choice: All finite Gaussian mixtures
H∞ =

∞⋃
k=1
Hk

Family Covariance Multimodality Arbitrary
approximation

Mean-field 7 7 7

Full-rank Nµ,Σ 3 7 7

Hk 3 3 7

H∞ 3 3 3

Greedy Boosting

Want to construct a sequence of approximations
qt(θ) ∈ Ht such that as t→∞

∆D(qt) := D(qt, p)− inf
q∈H∞

D(q, p)↘ 0.
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Greedy Boosting Algorithm
1 Start with q1 ∈ H1.
2 Then iteratively for t = 2, 3, · · · , we let

qt = (1− αt) qt−1 + αt ht

such that for some εt↘ 0,
D(qt, p) ≤ inf

h∈H1,0≤α≤1
D((1−α)qt−1+αh, p)+εt. (∗)

However, optimization (∗) is non-convex.
Our Algorithm

Two-step approach for Greedy Boosting (∗).
Step 1: Gradient Boosting: Dist. ht
Friedman, (2001) proposed identifying the form
of ht with the gradient information when in-
crement is small.
For DKL, the negative functional gradient is
the residual of log posterior density:

−∇D̃KL(qt−1) = log(f (θ)/qt−1(θ)).
To minimize KL, we match ht to −∇D̃KL(qt−1):

ĥt = arg min
h∈H1, c>0

‖c · h− log(f/qt−1)‖2
2.

With Laplacian approximation to the residual, we
have a simple algorithm for quickly identifying
ĥµt,Σt

using optimization. We have closed-form
solutions:

µ∗ = θ∗, Σ∗ = Hessian−1
θ∗ /2.
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Step 2: Stochastic Newton’s: Weight αt
Fixing ht, determining corresponding weight

αt = min
0≤α≤1

D̃KL((1− α)qt−1 + αht)
is convex. Further, by drawing samples from
qt−1 and ht, we can get Monte Carlo esti-
mates of derivatives D̂′KL and D̂′′KL.

Theoretical Results

From Zhang, (2003), for greedy boosting, if
D(q, p) is (1) convex in q and (2) strongly
smooth in q, then we have

∆D(qt)→ 0 at rate O(1/t).
In Theorem 1, we showed that under mild con-
ditions (e.g., that hold on a bounded set) DKL
satisfies these conditions.

Simulation Experiments

Figure 1: True: Heavy-tailed Cauchy

Figure 2: True: Mixture of univariate Gaussians

Logistic Regression Experiment

We run Bayesian logistic regression on the
Nodal dataset, consisting of N = 53 observa-
tions of d = 6 predictors xi and a binary re-
sponse yi ∈ {−1,+1}. We compare to MCMC
(as truth) and mean-field VB.
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Figure 3: Bayesian logistic regression
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