



# Boosting Variational Inference

Richard (Fangjian) Guo\*, Xiangyu Wang<sup>†</sup>, Kai Fan<sup>†</sup>, Tamara Broderick\*, David B. Dunson<sup>†</sup>

\*Massachusetts Institute of Technology, †Duke University



arXiv:1611.05559

#### Overview

Black-box Bayesian inference is hard:

- MCMC can be slow.
- Variational inference can be inaccurate.

#### **Boosting Variational Inference:**

- Fast: optimization-based
- Nonparametric & Adaptive: iteratively improves by adapting to residual

## Variational Bayes

Variational Bayes approximates true posterior  $p(\boldsymbol{\theta}|X)$  within the closest  $q(\boldsymbol{\theta})$  within a family of distributions  $\mathcal{H}$ , in terms of discrepancy measure  $\mathcal{D}$  between the two distributions.

$$q^* = \underset{q \in \mathcal{H}}{\arg\min} \, \mathcal{D}(q(\boldsymbol{\theta}), p(\boldsymbol{\theta}|X))$$



Kullback-Leibler (KL) divergence is often used as discrepancy measure  $(f = \pi(\theta)p(X|\theta))$ 

$$\mathcal{D}(q, p) := \mathcal{D}_{\mathsf{KL}}(q \| p) = \int q(\boldsymbol{\theta}) \log \frac{q(\boldsymbol{\theta})}{p(\boldsymbol{\theta}|X)} d\boldsymbol{\theta}$$
$$= \mathsf{const} + \int q \log(q/f) d\boldsymbol{\theta}.$$

Limitations of current VB:

- Point estimates: often good, can be biased
- Poor uncertainty estimates: covariance, multimodality
- Cannot improve accuracy given more time

# **VB** Approximation Family

Accuracy of VB is *mainly* limited by the **inflex-ibility of approximation family**.





- $oldsymbol{\bullet}$  Mean-field  $q(oldsymbol{ heta}) = \Pi_i \, q_i( heta_i)$
- Full-rank Gaussian

$$\mathcal{H}_1 = \{h : h(\boldsymbol{\theta}) = \mathcal{N}_{\boldsymbol{\mu}, \boldsymbol{\Sigma}}(\boldsymbol{\theta})\}$$

$$\mathcal{H}_k = \{h : h(\boldsymbol{\theta}) = \sum_{j=1}^k w_j \mathcal{N}_{\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j}(\boldsymbol{\theta}), \boldsymbol{w} \in \Delta_k \}$$

Our choice: All finite Gaussian mixtures

$$\mathcal{H}_{\infty} = igcup_{k=1}^{\infty} \mathcal{H}_k$$

| Family                                                     | Covariance | Multimodality | Arbitrary     |
|------------------------------------------------------------|------------|---------------|---------------|
|                                                            |            |               | approximation |
| Mean-field                                                 | X          | X             | X             |
| Full-rank $\mathcal{N}_{oldsymbol{\mu},oldsymbol{\Sigma}}$ |            | X             | ×             |
| $\mathcal{H}_k$                                            |            |               | X             |
| $\mathcal{H}_{\infty}$                                     |            |               |               |

## **Greedy Boosting**

Want to construct a sequence of approximations  $q_t(\boldsymbol{\theta}) \in \mathcal{H}_t$  such that as  $t \to \infty$ 

$$\Delta \mathcal{D}(q_t) := \mathcal{D}(q_t, p) - \inf_{q \in \mathcal{H}_{\infty}} \mathcal{D}(q, p) \searrow 0.$$



#### **Greedy Boosting Algorithm**

- •Start with  $q_1 \in \mathcal{H}_1$ .
- **2** Then iteratively for  $t=2,3,\cdots$ , we let

$$q_t = (1 - \alpha_t) \ q_{t-1} + \alpha_t \ h_t$$

such that for some  $\epsilon_t \searrow 0$ ,

$$\mathcal{D}(q_t, p) \leq \inf_{h \in \mathcal{H}_1, 0 \leq \alpha \leq 1} \mathcal{D}((1-\alpha)q_{t-1} + \alpha h, p) + \epsilon_t. (*)$$

**However, optimization** (\*) is non-convex.

# Our Algorithm

Two-step approach for *Greedy Boosting* (\*). Step 1: Gradient Boosting: Dist.  $h_t$ 

Friedman, (2001) proposed identifying the form of  $h_t$  with the **gradient information** when **increment is small**.

For  $\mathcal{D}_{KL}$ , the negative functional gradient is the residual of log posterior density:

$$-\nabla \mathcal{D}_{\mathsf{KL}}(q_{t-1}) = \log(f(\boldsymbol{\theta})/q_{t-1}(\boldsymbol{\theta})).$$

To minimize KL, we match  $h_t$  to  $-\nabla \tilde{\mathcal{D}}_{\mathsf{KL}}(q_{t-1})$ :

$$\hat{h}_t = \underset{h \in \mathcal{H}_1, c > 0}{\arg \min} \|c \cdot h - \log(f/q_{t-1})\|_2^2.$$

With Laplacian approximation to the residual, we have a simple algorithm for quickly identifying  $\hat{h}_{\mu_t,\Sigma_t}$  using optimization. We have closed-form solutions:



Step 2: Stochastic Newton's: Weight  $\alpha_t$  Fixing  $h_t$ , determining corresponding weight

$$\alpha_t = \min_{0 \le \alpha \le 1} \tilde{\mathcal{D}}_{\mathsf{KL}}((1 - \alpha)q_{t-1} + \alpha h_t)$$

is **convex**. Further, by drawing samples from  $q_{t-1}$  and  $h_t$ , we can get **Monte Carlo estimates** of derivatives  $\hat{\mathcal{D}}'_{\mathsf{KL}}$  and  $\hat{\mathcal{D}}''_{\mathsf{KL}}$ .

#### **Theoretical Results**

From Zhang, (2003), for greedy boosting, if  $\mathcal{D}(q,p)$  is (1) **convex** in q and (2) **strongly smooth** in q, then we have

$$\Delta \mathcal{D}(q_t) \to 0$$
 at rate  $O(1/t)$ .

In **Theorem** 1, we showed that under mild conditions (e.g., that hold on a bounded set)  $\mathcal{D}_{\text{KL}}$  satisfies these conditions.

## Simulation Experiments



Figure 1: True: Heavy-tailed Cauchy



Figure 2: True: Mixture of univariate Gaussians

# Logistic Regression Experiment

We run Bayesian logistic regression on the Nodal dataset, consisting of N=53 observations of d=6 predictors  $\boldsymbol{x}_i$  and a binary response  $y_i \in \{-1,+1\}$ . We compare to MCMC (as truth) and mean-field VB.



Figure 3: Bayesian logistic regression

#### References

Friedman, Jerome H (2001). "Greedy function approximation: a gradient boosting machine". In: *Annals of statistics*, pp. 1189–1232.

Zhang, Tong (2003). "Sequential greedy approximation for certain convex optimization problems". In: *IEEE Transactions on Information Theory* 49.3, pp. 682–691.