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Abstract
Modern Bayesian inference typically requires some form of posterior approxi-
mation, and mean-field variational inference (MFVI) is an increasingly popular
choice due to its speed. But MFVI can be inaccurate in various aspects, including
an inability to capture multimodality in the posterior and underestimation of the
posterior covariance. These issues arise since MFVI considers approximations to
the posterior only in a family of factorized distributions. We instead consider a
much more flexible approximating family consisting of all possible finite mixtures
of a parametric base distribution (e.g., Gaussian). In order to efficiently find a
high-quality posterior approximation within this family, we borrow ideas from
gradient boosting and propose boosting variational inference (BVI). BVI iteratively
improves the current approximation by mixing it with a new component from the
base distribution family. We develop practical algorithms for BVI and demonstrate
their performance on both real and simulated data.

1 Introduction
Bayesian inference offers a flexible framework for learning with rich, hierarchical models of data
and for coherently quantifying uncertainty in unknown parameters through the posterior distribution.
However, for any moderately complex model, the posterior is intractable to calculate exactly and
must be approximated. Mean-field variational inference (MFVI) has grown in popularity as a method
for approximating the posterior since it is often fast even for large data sets.

MFVI is fast in part because it formulates posterior approximation as an optimization problem, and
leads to an efficient coordinate-ascent algorithm when there is certain structure within the model,
known as “conditional conjugacy” [3]. Such conjugacy properties typically only hold for factorization
approximations, which effectively cannot capture multimodality and underestimate the posterior
covariance, sometimes drastically [1, 28, 27, 25, 17]. The linear response technique [13] and the
full-rank approach within [15] provide a correction to the covariance underestimation of MFVI in
the unimodal case but do not address the multimodality issue. “Black-box” inference, as in [23] and
the mean-field approach within [15], focus on making the MFVI optimization problem easier for
practitioners, by avoiding tedious calculations, but they do not change the optimization objective of
MFVI and therefore still face the problems outlined here.

An alternative and more flexible class of approximating distributions for variational inference (VI)
is the family of mixture models. Indeed, even if we consider only Gaussian base distributions, one
can find a mixture of Gaussians that is arbitrarily close to any continuous probability density [7, 20].
[2, 14, 12] have previously considered using approximating families with a fixed number of mixture
components; these authors also employ a further approximation to the VI optimization objective. The
resulting optimization algorithms have clear practical limitations, which limit the ability to find a
good approximation in the mixture model family. In particular, there is large sensitivity to initial
values, for good performance algorithms may need to be rerun for many different initializations and
component numbers, and the approximation to the VI objective can limit flexibility.
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As a much more effective algorithm, which automatically adapts the number of mixture components
to the complexity of the posterior and increases approximation accuracy, we propose a novel approach
inspired by boosting. We call our method boosting variational inference (BVI). BVI starts with
a single-component approximation and proceeds to add a new mixture component at each step.
Independent to our work, we notice that this idea is also considered by a concurrent paper [18].

2 Variational inference and Gaussian mixtures

Suppose we observeN data points, collected in the matrixX withN rows. A Bayesian model is spec-
ified through a prior π(θ) and likelihood p(X|θ), yielding the posterior p(θ|X) ∝ π(θ)p(X|θ) =:
f(θ) by the Bayes Theorem, with θ ∈ RD. While f is easy to evaluate, the normalizing constant
p(X) involves an intractable integral, so an approximation is needed. The posterior p(θ|X) is rarely
used directly; rather, we would often like to report a mean, covariance, or other posterior functional
Ep g(θ) =

∫
p(θ|X)g(θ)dθ for some function g. E.g., g(θ) = θ yields the posterior mean.

One approach to approximate the posterior is as follows. Choose a discrepancyD between distribution
q(θ) and the exact posterior pX(θ) := p(θ|X). We assume D is non-negative and zero only when
q = pX . In general, though, the optimum D∗ := infq∈HD(q, pX) over some constrained family of
distributions H may be strictly greater than zero. Roughly, we expect a larger H to yield a lower
D∗ but at a higher computational cost. When D(q, pX) = DKL(q||pX), the Kullback-Leibler (KL)
divergence between q and pX , this optimization problem is called variational inference. A particularly
flexible choice forH is the family of all finite mixtures. More precisely, let hφ(θ) be some parametric
distribution over θ with parameter φ ∈ Φ. E.g., for a Gaussian mixtures, hφ(θ) = Nµ,Σ(θ) with
mean vector µ and positive semidefinite covariance Σ. Let ∆k denote the (k-1)-dimensional simplex:
∆k = {w ∈ Rk :

∑k
j=1 wj = 1 & ∀j, wj ≥ 0}. Then Hk is the set of all k-component mixtures

over these base distributions, andH∞ is the set of all finite mixtures, namely

Hk = {h : h(θ) =

k∑
j=1

wjhφj (θ), w ∈ ∆k,φ ∈ Φk}, H∞ =

∞⋃
k=1

Hk. (1)

Our main contribution is to propose a novel algorithm for approximately solving this discrepancy
minimization problem.

3 Boosting and Gradient Boosting

In general, reachingD∗ may require an infinite mixture. We consider a greedy, incremental procedure,
as in [29], to approach D∗ with a sequence of finite mixtures q1, q2, · · · for each qt ∈ Ht. The quality
of approximation can be measured with the excess discrepancy ∆D(qt) := D(qt, pX) − D∗ ≥ 0,
and we would like ∆D(qt) → 0. Hence, given any ε > 0, we can find a large enough t such that
∆D(qt) ≤ ε. In particular, we start with a single base distribution q1 = hφ1 for some φ1. Iteratively,
at each step t = 2, 3, . . ., let qt−1 be the approximation from the previous step. Form qt by mixing
a new base distribution ht with weight αt ∈ [0, 1] together with qt−1 with weight (1 − αt). This
approach is called greedy [22, Ch. 4] if we choose (approximately) optimal base distribution ht and
weight αt at each step t:

qt = (1− αt)qt−1 + αtht, D(qt, pX) ≤ inf
φ∈Φ,0≤α≤1

D((1− α)qt−1 + αhφ, pX) + εt, (2)

where we relax optimality to within some non-negative sequence εt ↘ 0. At each step qt remains
normalized by construction and takes the form of a mixture of base distributions. The iterative updates
are in the style of boosting or greedy error minimization [9, 8, 10, 16]. Under convexity and strong
smoothness conditions on D(·, px), Theorem II.1 of [29] guarantees that ∆D(qt) converges to zero
at rate O(1/t). We will verify that KL divergence satisfies these conditions in Theorem 1.

Gradient Boosting Let D(q) := D(q, pX) as a shorthand notation. Rather than jointly optimizing
D((1−αt)qt−1 +αtht) over (αt, ht), which may be non-convex and difficult in general, we consider
nearly optimal choices (cf. Eq. (2)). We choose ht first, in a gradient descent style, and then
optimize the corresponding weight αt. For ht, we follow gradient boosting [11] and consider the
functional gradient ∇D(q) at the current solution q = qt−1. In what follows, we adopt the notation
〈g, h〉 =

∫
g(θ)h(θ)dθ and ‖h‖22 =

∫
h(θ)2dθ. When ‖h‖2 ≈ 0, a Taylor expansion yields

D(q + h) = D(q) + 〈g, h〉+ o(‖h‖22), (3)
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where g is the functional gradient ∇D(q) := g(θ). We choose h to minimize the inner product in
Eq. (3); i.e., as in gradient descent, we choose h to “match the direction” of −∇D(q).

4 Boosting Variational Inference

Boosting variational inference (BVI) applies the framework of the previous section with Kullback-
Leibler (KL) divergence as the discrepancy measure. We first justify the choice of KL, and then
present a two-stage multivariate Gaussian mixture boosting algorithm (Algorithm 1) to stochastically
decrease the excess discrepancy. In each iteration, it firstly identifies ht with gradient boosting, and
then solves for αt. The KL discrepancy measure is defined as

D(q, pX) = DKL(q‖pX) =

∫
q(θ) log

q(θ)

pX(θ)
dθ = log p(X) +

∫
q(θ) log

q(θ)

f(θ)
dθ. (4)

By dropping the constant log p(X), an effective discrepancy (negative value of ELBO [3]) can be
defined as D̃KL(q) =

∫
q(θ) log q(θ)

f(θ)dθ. The following theorem shows that KL satisfies the greedy
boosting conditions [29, 22] — under some additional assumptions (that may, e.g., hold on a bounded
set). See Appendix A for proof and discussions. This trivially implies that the conditions also hold
for D̃KL(q). See Appendix C for a similar analysis of KL divergence in the other direction, D(pX‖q).
Theorem 1. Given densities q1, q2 and true density p, KL divergence is a convex functional, i.e., for
any α ∈ [0, 1] satisfying

DKL((1− α)q1 + αq2‖p) ≤ (1− α)DKL(q1‖p) + αDKL(q2‖p). (5)

If we further assume that densities are bounded q1(θ), q2(θ) ≥ a > 0, and denote the functional
gradient of KL at density q as ∇DKL(q) = log q(θ) − log p(θ), then the KL divergence is also
strongly smooth, i.e., satisfying

DKL(q2‖p)−DKL(q1‖p) ≤ 〈∇DKL(q1‖p), q2 − q1〉+
1

a
‖q2 − q1‖22. (6)

Setting αt with Stochastic Newton For fixed ht, D̃KL is a convex function of αt (see (11) in
Appendix B). We can estimate both its first and second derivatives with Monte Carlo, by drawing
samples from ht and qt−1. Then we can use a stochastic 2nd-order method, e.g., Newton’s [5], to
solve αt. See Appendix B for details.

Setting ht with Laplacian Gradient Boosting Following the idea of Eq. (3) for gradient boosting,
we take the Taylor expansion of D̃KL(qt) around αt ↘ 0

D̃KL(qt) = D̃KL(qt−1) + αt〈ht, log
qt−1

f
〉 − αt〈qt−1, log

qt−1

f
〉+ o(α2

t ), (7)

which suggests minimizing 〈ht, log qt−1

f 〉, where log qt−1

f is the functional gradient∇D̃KL(qt−1).

However, direct minimization of the inner product is ill-posed since ht will degenerate to a point
mass at the minimum of functional gradient. Instead, following the least square procedure of [11], we
“match the direction” in terms of l2 norm by ĥt = arg minh=hφ,λ>0 ‖λh− log(f/qt−1)‖22. Plugging
in the optimal value for λ, and with some algebra the objective is identical to

ĥt = arg max
h=hφ

Eθ∼h log(f(θ)/qt−1(θ))− 1/2 · log ‖h‖22, (8)

where log(f/qt−1) is effectively the residual log-likelihood. Ideally, when qt−1 ∝ f , the residual
should be flat; otherwise, its has peaks where posterior density is underestimated and basins where
overestimated. For Gaussian family hφ(θ) = Nµ,Σ(θ), (8) becomes

ĥµt,Σt
= arg max

µ,Σ
Eθ∼Nµ,Σ

log(f(θ)/qt−1(θ)) + 1/4 · log |Σ|. (9)

We notice that the log determinant term prevents degeneration. We therefore propose the follow-
ing heuristic (Algorithm 1) to efficiently optimize (9): we approximately decompose the residual
log(f/qt−1) into a constant plus a quadratic peak − 1

2 (θ − η)TS−1(θ − η) (i.e. Laplacian approx-
imation to f/qt−1), and then (9) becomes convex and solutions are in closed-form as µ∗ = η,
Σ∗ = S/2, where η and S−1 can be solved numerically with any suitable optimization routine.
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Algorithm 1 Laplacian Gradient Boosting for Gaussian Base Family Nµ,Σ
Require: evaluable product density of prior and likelihood f(θ) for θ ∈ RD

Start with some initial approximation q1 = Nµ1,Σ1 . e.g. q1 = N0,cI

for t = 2 to T do
µ̂t ← arg minθ log(qt−1(θ)/f(θ)) with an optimization routine initialized at θ0 ∼ qt−1.
Ht ← Hessianθ=µ̂t log(qt−1(θ)/f(θ)) with numerical approximation
Σ̂t ←H−1

t /2 and let ĥt(θ) = N (θ|µ̂t, Σ̂t) be the new component
α̂t ← arg minαt D̃KL((1− αt)qt−1 + αtĥt) with Algorithm 2. . See Appendix B
qt ← (1− α̂t)qt−1 + α̂tĥt. . Boosting

end for
return qt

5 Experiments

In this section, we compare performance of BVI to MFVI with both toy and real-world data.

Toy Examples Figure 1 highlights the ability of BVI (unlike MFVI) to capture (a) heavy tails (b)
multimodality and (c) multivariate distributions. Figure 1 (a) is a Cauchy density pX(θ) ∝ 1

1+(θ/2)2 ;
(b) is a mixture of univariate Gaussians with different locations and scales; (c) is a mixture of five
2D-Gaussians with random locations and covariances. We initialize with a Gaussian with very large
(co)variance, and then run BVI for 50 iterations. Sequences (αt)t and (D̂KL(qt, p))t are shown in
subplots. Since these distributions are non-conjugate, we run the automatic variational inference
(ADVI) in Stan [15, 6] to obtain results for MFVI (orange).

Figure 1: Toy examples: (a) (heavy-tailed) Cauchy distribution (b) a mixture of four univari-
ate Gaussians and (c) a mixture of five bivariate Gaussians with random means and covariances.
Curves/contours are colored by blue (true), red (BVI), green (initial q1 in BVI) and orange (ADVI).
Sequence of (αt)t and Monte Carlo estimates of (DKL(qt))t are plotted against iteration in subplots.
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Figure 2: Estimated posterior mean and covariance for logistic regression (dashed: estimate = true).

Bayesian Logistic Regression We apply our algorithm to Bayesian logistic regression for the
Nodal dataset [4], consisting of N = 53 observations of six predictors xi (intercept included) and a
binary response yi ∈ {−1,+1}. The likelihood is

∏N
i=1 g(yix

>
i β), where g(x) = (1 + e−x)−1 and

we use the prior β ∼ N (0, I). For reference, we show results from the Polya-Gamma sampler (an
MCMC algorithm for logistic regression) using R package BayesLogit [21] as the ground truth. We
also compare the performance of BVI to MFVI (ADVI with Stan). As shown in Figure 2, while both
methods capture the correct mean, BVI provides better estimates of the variance and, unlike MFVI,
does not set the covariances to zero. We expect more dramatic differences in cases where MFVI
yields biased estimates of the posterior means [26] and cases where the posterior is multimodal. We
plan to investigate these cases in future work.
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Appendices
A Proof of Theorem 1

Proof. For any densities q1, q2 and α ∈ [0, 1], we have the convexity from

DKL((1− α)q1 + αq2‖p) = (1− α)

∫
q1 log

(1− α)q1 + αq2

p
dθ + α

∫
q2 log

(1− α)q1 + αq2

p
dθ

= (1− α)

∫
q1 log

q1[1 + α(q2/q1 − 1)]

p
dθ + α

∫
q2 log

q2[1 + (1− α)(q1/q2 − 1)]

p
dθ

= (1− α)

∫
q1 log

q1

p
dθ + α

∫
q2 log

q2

p
dθ + (1− α)

∫
q1 log[1 + α(q2/q1 − 1)]dθ

+ α

∫
q2 log[1 + (1− α)(q1/q2 − 1)]dθ

≤ (1− α)DKL(q1‖p) + αDKL(q2‖p) + (1− α)

∫
α(q2 − q1)dθ + α

∫
(1− α)(q1 − q2)dθ

≤ (1− α)DKL(q1‖p) + αDKL(q2‖p),

where we have used log(1 + x) ≤ x and
∫

(q2 − q1)dθ = 0.

Let h = q2 − q1, then we have
∫
h(θ)dθ =

∫
(q2 − q1)dθ = 0. Again, using the inequality

log(1 + x) ≤ x, we have the strong smoothness from

DKL(q1 + h‖p)−DKL(q1‖p) = 〈q1 + h, log(q1 + h)〉 − 〈q1, log q1〉 − 〈h, log p〉

≤ 〈q1 + h,
h

q1
+ log q1〉 − 〈q1, log q1〉 − 〈h, log p〉

= 〈h, log q1〉+ 〈h, h
q1
〉 − 〈h, log p〉

≤ 〈log q1 − log p, h〉+
1

a
‖h‖22,

where in the last step we used the assumption that q1, q2 ≥ a > 0.

Note that here we assume that densities are lower-bounded by a > 0. While this may seem unrealistic
for some densities, this is a technical requirement to ensure that the discrepancy is “smooth” enough
so that greedy boosting can be applied. For densities on RD that do not have a lower bound, we
suggest consider approximation within (1− ε) of probability mass. In particular, consider a closed set
Θ ⊂ RD such that

∫
Θ
px(θ)dθ = (1− ε) for a small ε > 0. Then we can use the smallest density in

Θ as a lower bound.

B Stochastic Newton’s Algorithm for Solving Mixing Weights

Fixing ht, by taking derivatives of effective discrepancy with respect to αt, we have

∂ D̃KL(qt)

∂αt
=

∫
(ht − qt−1) log

(1− αt)qt−1 + αtht
f

dθ = E
θ∼ht

γαt(θ)− E
θ∼qt−1

γαt(θ), (10)

∂2 D̃KL(qt)

∂α2
t

=

∫
(ht − qt−1)2

(1− αt)qt−1 + αtht
dθ = E

θ∼ht
ηαt(θ)− E

θ∼qt−1

ηαt(θ) ≥ 0, (11)

where γαt and ηαt are evaluable functions of θ and αt given below in Algorithm 2. Because the first
and second derivatives are stochastically estimated instead of exact, to ensure convergence we use a
decaying sequence of step sizes b/k in Algorithm 2 that satisfy the Robbins-Monro conditions [5, 24].
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Algorithm 2 Stochastic Newton’s
Require: current approximation qt−1(θ), new component ht(θ), product density of prior and

likelihood f(θ), Monte Carlo sample size n, initial step size b > 0
Initialize k ← 0, αt ← 0

Independently draw {θ(h)
i } ∼ ht and {θ(q)

i } ∼ qt−1 for i = 1, · · · , n
while αt not convergent do

Compute D̂′KL = 1
n

∑
i(γαt(θ

(h)
i )− γαt(θ

(q)
i )) with γαt(θ) = log (1−αt)qt−1(θ)+αtht(θ)

f(θ)

Compute D̂′′KL = 1
n

∑
i(ηαt(θ

(h)
i )− ηαt(θ(q)

i )) with ηαt(θ) = ht(θ)−qt−1(θ)
(1−αt)qt−1(θ)+αtht(θ)

k ← k + 1, αt ← αt − (b/k)D̂′KL/D̂′′KL
end while

C BVI with KL Divergence in the Alternative Direction

KL divergence is asymmetric and can be written in two directions [19]: DKL(qt‖pX) andDKL(pX‖qt).
We have discussed BVI algorithm in the main text based on the “exclusive” direction DKL(qt‖pX); in
this Appendix, we show that a similar algorithm can be derived with the alternative direction, namely
the “inclusive” direction

DKL(pX‖qt) =

∫
pX(θ) log

pX(θ)

qt(θ)
dθ =

∫
pX(θ) log pX(θ)dθ − c

∫
f(θ) log qt(θ)dθ. (12)

Here c > 0 is the normalizing constant. Hence, by dropping constants that do not involve qt, we can
similarly define an effective discrepancy as

D̃kl(q) = −
∫
f(θ) log q(θ)dθ, (13)

where we use lower-case italic subscript kl to distinguish it from the previous KL divergence. Fixing
pX , we will use the notation Dkl(q) := DKL(pX‖q).

Before proceeding to the derivation of algorithm, we firstly show that DKL(pX‖qt) also satisfies the
regularity conditions required by greedy boosting.

Lemma 1. DKL(p‖q) is a convex functional of q, i.e., given densities p, q1, q2, it holds that

DKL(p‖(1− α)q1 + αq2) ≤ (1− α)DKL(p‖q1) + αDKL(p‖q2) (14)

for all α ∈ [0, 1].

Proof. For any α ∈ [0, 1], by Jensen’s inequality,

log[(1− α)q1 + αq2] ≥ (1− α) log q1 + α log q2.

Then it directly follows that

DKL(p‖(1− α)q1 + αq2) ≤ (1− α)DKL(p‖q1) + αDKL(p‖q2).

Another condition required by boosting framework of [29] is strong smoothness. It has been shown
that for DKL(p‖q) to satisfy strong smoothness, it suffices to require an upper bound on the log ratio
of base family densities [16] [22, Chapter 4]:

a = sup
q1,q2∈{hφ:φ∈Φ},

θ∈RD

log
q1(θ)

q2(θ)
< +∞. (15)

This condition might be translated to constraints on the parameter space Φ.
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Solving αt Again, we firstly show that by fixing ht, optimizing αt is a convex problem, and can be
solved with stochastic Newton’s method. Since in D̃kl the integral measure does not involve αt, we
have

∂

∂α
D̃kl = −

∫
f(θ)

∂ log qt(θ)

∂α
dθ = −

∫
f(θ)

ht − qt−1

(1− α)qt−1 + αht
dθ, (16)

∂2

∂α2
D̃kl = −

∫
f(θ)

∂2 log qt(θ)

∂α2
dθ =

∫
f(θ)

(ht − qt−1)2

[(1− α)qt−1 + αht]2
dθ ≥ 0. (17)

Notice that as we cannot sample from the true posterior pX(θ) ∝ f(θ), we cannot directly estimate
these derivatives with Monte Carlo. However, importance sampling can be applied here, by rewriting
the derivatives as

∂

∂α
D̃kl = − E

θ∼qt−1

f(θ)

qt−1(θ)

ht(θ)− qt−1(θ)

(1− α)qt−1(θ) + αht(θ)
(18)

∂2

∂α2
D̃kl = E

θ∼qt−1

f(θ)

qt−1(θ)

(ht(θ)− qt−1(θ))2

[(1− α)qt−1(θ) + αht(θ)]2
. (19)

Hence we can draw “particles” θi ∼ qt−1(θ) and reweigh it with wi = f(θi)/qt−1(θi). And we
have the following algorithm.

Algorithm 3 Stochastic Newton’s with Dkl(qt) = DKL(px‖qt)
Require: current approximation qt−1(θ), new component ht(θ), product density of prior and

likelihood f(θ), importance sampling sample size n, initial step size b > 0
Initialize k ← 0, αt ← 0
Independently draw {θi} ∼ qt−1 for i = 1, · · · , n
wi ← f(θi)/qt−1(θi) for i = 1, · · · , n
while αt not convergent do

si ← ht(θi)−qt−1(θi)
(1−αt)qt−1(θi)+αtht(θi)

for i = 1, · · · , n
Compute D̂′kl = − 1

n

∑
i wisi

Compute D̂′′kl = 1
n

∑
i wis

2
i

k ← k + 1, αt ← αt − (b/k)D̂′kl/D̂′′kl
end while

Setting ht It turns out with Dkl we can derive the same gradient boosting procedure as Algorithm 1.
Again, with Taylor expansion of the effective discrepancy at αt ↘ 0, we have

D̃kl(qt) = D̃kl(qt−1)− αt〈f(θ)/qt−1(θ), ht(θ)〉+ αt

∫
f(θ)dθ + o(α2

t ). (20)

Similarly, to avoid degeneracy, we consider

min
h=hφ,λ>0

‖λh− f/qt−1‖22, (21)

which is equivalent to

max
h=hφ

log E
θ∼h

(L(θ)/qt−1(θ))− 1/2 · log ‖h‖22. (22)

By Jensen’s inequality, we observe that the previous objective in Eqs. (8) is in fact a lower bound of
this objective, namely

log E
θ∼h

(f(θ)/qt−1(θ))− 1/2 · log ‖h‖22 ≥ E
θ∼h

log(f(θ)/qt−1(θ))− 1/2 · log ‖h‖22. (23)

And we further notice that this bound is iteratively tightened, since as qt−1(θ) better approximates
pX(θ), f(θ)/qt−1(θ) ∝ pX(θ)/qt−1(θ) will converge to a constant. By maximizing the lower
bound, we arrive at the same gradient boosting objective, and hence the same Laplacian gradient
boosting subroutine for setting the new component ht.

To summarize, with KL divergence in the alternative direction DKL(pX‖qt) as the discrepancy
measure, we derive an algorithm almost identical to Algorithm 1, except that the step for solving α̂t
is performed with Algorithm 3.
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