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Abstract

HamiltonianMonte Carlo (HMC) is a powerfulMarkov chainMonte Carlo (MCMC)
method for performing approximate inference in complex probabilistic models
of continuous variables. In common with many MCMC methods however the
standard HMC approach performs poorly in distributions with multiple isolated
modes. Based on an approach proposed in the statistical physics literature, we
present a method for augmenting the Hamiltonian system with an extra continuous
temperature control variable which allows the dynamic to bridge between sampling
a complex target distribution and a simpler uni-modal base distribution. This
augmentation both helps increase mode-hopping in multi-modal targets and allows
the normalisation constant of the target distribution to be estimated. The method is
simple to implement within existing HMC code, requiring only a standard leapfrog
integrator. It produces MCMC samples from the target distribution which can be
used to directly estimate expectations without any importance re-weighting.

1 Introduction

Hamiltonian Monte Carlo (HMC) [5, 10] has become a workhorse for performing approximate
inference in complex high-dimensional probabilistic models of continuous variables. Implementations
in probabilistic programming frameworks such as Stan [4] and PyMC3 [12] have allowed increasingly
‘black-box’ use of HMC methods, leveraging reverse-mode automatic differentiation to efficiently
compute the necessary model gradients without manual derivation and using extensions to the original
algorithm such as the No U-Turn Sampler (NUTS) [7] to adaptively tune the method’s free parameters.
In HMC the target density of interest p [x = x] = exp [−�(x)] ∕Z is defined on a vector variable
x ∈ ℝD =  , which we will refer to as the configuration state. This is augmented with a momentum
state p ∈ ℝD. Typically the momentum state is chosen to be independent of the configuration state
with marginal p [p = p] ∝ exp [−�(p)] such that the joint density factorises as p [x = x, p = p] =
p [x = x]p [p = p] ∝ exp [−�(x) − �(p)]. With analogy to classical dynamics, �(x) is referred to
as the potential energy and �(p) the kinetic energy, with H(x, p) = �(x) + �(p) being termed the
Hamiltonian. By construction, marginalising the joint density over the momenta recovers p [x = x].
By simulating an energy conserving dynamical system, HMC is able to propose long range moves
in the state space with a high probability of acceptance. The energy-conservation property which
affords this desirable behaviour also however suggests that standard HMC updates are unlikely to
move between isolated modes in a target distribution. The Hamiltonian is approximately conserved
over a trajectory therefore we have �(x′) − �(x) ≈ �(p) − �(p′). Typically a quadratic kinetic energy
�(p) = pTM−1p ∕ 2 is used corresponding to a Gaussian marginal density on the momentum state.
As this kinetic energy is bounded from below by zero, the maximum change in potential energy over
a trajectory is approximately equal to the initial kinetic energy. At equilibrium this will have a �2

distribution with mean D∕2 and variance D [1, 10]. If potential energy barriers significantly larger
than ∼ D separate regions of the configuration state space the HMC updates are unlikely to move
across the barriers meaning impractically long sampling runs will be needed for effective ergodicity.



A common approach in MCMC methods for dealing with multi-modal target distributions is to
introduce a concept of temperature. In statistical mechanics, the Boltzmann distribution on a con-
figuration x of a mechanical system with energy function � and in thermal equilibrium with a heat
bath at temperature T is defined by a probability density exp [−��(x)] ∕(�) where � = (kBT )−1is the inverse temperature, kB is Boltzmann’s constant and (�) is the partition function. At high
temperatures (� → 0) the density function becomes increasingly flat across the configuration state
space and correspondingly energy barriers between different regions of the state space become lower.
In the standard statistical mechanics formulation, the distribution in the limit � → 0 is an improper
flat density across the configuration state space. More usefully from a statistical perspective we can
use an inverse temperature variable � ∈ [0, 1] to geometrically bridge between a simple distribution
with normalised density exp [− (x)] at � = 0 and the target distribution at � = 1.
AdiabaticMonte Carlo [2] is an interesting extension to the standardHMC frameworkwhich introduces
a continuously varying temperature variable in to the system state. The original Hamiltonian system
(x, p) is further augmented with a contact coordinate γ ∈ ℝ which is a logit transform of the inverse
temperature �. Using the differential geometric theory of contact manifolds, a contact Hamiltonian is
defined on the augmented system, this defining a contact Hamiltonian flow, which can be considered
an instance of the thermodynamical concept of an isentropic or reversible adiabatic process.
Exact simulation of the contact Hamiltonian flow generates a trajectory which conserves the contact
Hamiltonian while deterministically traversing the inverse temperature range [0, 1]. Simulating the
contact Hamiltonian flow is non-trivial in practice however: the contact Hamiltonian includes the log
partition function log(�) as a term, the partial derivatives of which require computing expectations
with respect to �[x | �] which for most problems is intractable to do exactly. One option is to estimate
the expectations with an inner loop running HMC however this adds to the computational burden and
makes ensuring overall reversibility of the trajectory difficult.
An alternative extended Hamiltonian approach for simulating a system with a continuously varying
temperature was proposed recently in the statistical physics literature [6]. Again the inverse temperature
of the system is indirectly set via an auxiliary variable, which we will term a temperature control
variable u ∈ ℝ. This control variable is mapped to an interval [0, s], 0 < s < 1 via a piecewise
defined function f , with the conditions that for a pair of thresholds (�1, �2) with 0 < �1 < �2,
f (u) = 0 ∀ |u| ≤ �1, f (u) = s ∀ |u| ≥ �2 and 0 < f (u) < s ∀ �1 < |u| < �2. In practice we will
usually also require that f is continuously differentiable. Appendix C gives some concrete examples.
Unlike Adiabatic Monte Carlo, an additional momenta variable v corresponding to u is also introduced.
Although seemingly a minor difference this simplifies the implementation of the approach significantly
as the system retains a natural symplectic structure and can continue to be viewed within the usual
Hamiltonian dynamics framework. An extended Hamiltonian is then defined on the augmented system

H⋆(x, u, p, v) = [1 − f (u)]�(x) + !(u) + 1∕2pTM−1p + v2∕(2m) (1)
where !(u) is a ‘confining potential’ on u and m is the mass (marginal variance) associated with v.
The term 1 − f (u) acts analogously to the inverse temperature variable � encountered earlier. This
extended Hamiltonian is separable with respect to the extended configuration (x, u) and extended
momentum (p, v) and so can simulated using a standard leapfrog integrator. Due to the condition
f (u) = 0 ∀ |u| < �1, the set of sampled configuration states x which have associated |u| < �1 will(assuming the chain is ergodic) asymptotically converge in distribution to the target, and so can be
used to estimate expectations without any importance re-weighting.
In contrast to the contact Hamiltonian flow dynamic in Adiabatic Monte Carlo, the effective inverse
temperature �(u) = 1 − f (u) will not necessarily consistently increase or decrease when simulating
the extended Hamiltonian dynamic. If there are large barriers in the ‘extended potential energy’
[1 − f (u)]�(x) + !(u) as u is varied then the dynamic will tend not explore the full distribution of u
values well, limiting the gains from the augmentation.
To counter this issue, it is proposed in [6] to use an adaptive history-dependent biasing potential on u
to try to achieve a flat density across a bounded interval |u| < �2, using for example metadynamics
[9]. Although use of adaptive methods like meta-dynamics can help substantially in using the method
in a black-box fashion, it is also instructive to consider how we might flatten the marginal density on
u using non-adaptive methods. In some simpler cases this can remove the need for adaptive methods
altogether, and in more complex cases should still help improve robustness.
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2 Method

We use a variation of the original extended Hamiltonian approach, by geometrically bridging between
the target distribution and a simple base distribution with normalised density exp[− (x)]. As another
small alteration, we define the temperature control variable u to have a circular topology, wrapping at
the boundaries of the interval [−1, 1]. This removes the requirement to choose a ‘confining potential’
to ensure u remains bounded. Finally we introduce a term �(u) log � into the Hamiltonian, with log �
chosen as some deterministic approximation to logZ. This gives an extended Hamiltonian

H⋆(x, u, p, v) = �(u)�(x) + [1 − �(u)] (x) + �(u) log � + 1∕2pTM−1p + v2∕(2m) (2)
with �(u) = 1−f (u). We can trivially marginalise out the momenta from the joint distribution defined
by this Hamiltonian, and further marginalising over the configuration state x we have that

p [u = u] ∝ Z [�(u)] = �−�(u) ∫
exp {−�(u)�(x) − [1 − �(u)] (x)} dx. (3)

By applying Hölder’s and Jensen’s inequalities we can boundZ [�(u)] (see Appendix A for details)
�(u)

{

logZ − log � −Db→t} ≤ logZ [�(u)] ≤ �(u) {logZ − log �} (4)
where Db→t indicates the Kullback–Leibler (KL) divergence from the base to target distribution. If
log � = logZ the upper-bound is zero, implying a flat upper bound on the marginal density on u. If
additionally Db→t = 0, the bound becomes tight and we will have a flat marginal density on u.
In reality we do not know logZ and cannot choose a base distribution such that the KL divergence is
zero as we wish to use a simple density amenable to exploration. However we can see that under the
constraint of the base distribution allowing exploration, we wish to minimise the KL divergence to
the target distribution. Further we want to find a � as close to Z as possible.
Variational inference is an obvious route for tackling both problems, allowing us to fit a base density
from some simple parametric family (e.g. Gaussian) by minimising the KL divergence term in (4) and
also giving a lower bound on logZ. We can sometimes use variational inference methods specifically
aimed at the target distribution family, however more generally Automatic Differentiation Variational
Inference (ADVI) [8] provides a black-box framework for fitting variational approximations to differ-
entiable target densities. A potential problem is that the classes of target distribution that we are most
interested in applying our approach to — those with multiple isolated modes — are precisely the
same distributions that simple variational approximations will tend to fit poorly, the KL divergence
being minimised favouring ‘mode-seeking’ solutions [3], which fit only one mode well.
Our proposed solution is to fit multiple local variational approximations {qi(x)

}L
i=1 by minimising the

variational objective from multiple random parameter initialisations (discarding duplicate solutions),
each approximating a single mode well. We then form mixture of the local approximations weighted
by the exponential of the negative KL divergence from each qi to the target distribution (minus the
unknown logZ) as proposed in [14]. In our case a mixture distribution is unlikely to be a good choice
of base distribution as it will tend to itself be multi-modal. We therefore propose here to use a base
distribution with moments matched to the fitted mixture distribution, e.g. a single Gaussian with
mean and covariance matched to the mean and covariance of the mixture.
The relation between the marginal density on u and partition-functionZ [�(u)] expressed in (3) also
suggests that we can use the u samples from a Markov chain leaving the joint density on (x, u)
invariant to form an estimate of the normalising constant Z. If {u(s)}Ss=1 are a set of MCMC samples
of u then, as shown in Appendix B a consistent estimator of Z is defined by

Z =
1 − �2
�1

ℙ
[

0 ≤ |u| ≤ �1
]

ℙ
[

�2 ≤ |u| ≤ 1
]� = lim

S→∞

1 − �2
�1

∑S
s=1

{

1
[

0 ≤ |u(s)| ≤ �1
]}

∑S
s=1

{

1
[

�2 ≤ |u(s)| ≤ 1
]}
�. (5)

3 Experiments

To validate the method we compared running HMC in the extended and original Hamiltonian systems.
For the test model we used a Gaussian mixture relaxation of a Boltzmann machine distribution [13].
In certain parameter regimes the relaxations become highly multi-modal making it challenging for
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Figure 1: Errors in empirical moments estimated from MCMC samples compared to true values for a multi-
modal Boltzmann machine relaxation target distribution. MCMC dynamics were run both in the standard
Hamiltonian system and the proposed extended system, with both non-adaptive ‘static HMC’ and adaptive NUTS
algorithms being tested. For each system / algorithm pair 8 chains were run with the curves showing the average
RMSE over the chains and the shaded regions ±1 standard error of the mean. Each curve has been scaled by
the average time taken per chain for that setting. The dotted horizontal black line in both plots indicates the
corresponding RMSE in the moments of the mixture of variational approximations used to set the base density.

MCMC methods to explore well. The moments of the relaxation distribution can be calculated from
the moments of the original discrete distribution. This allows ground truth moments to be calculated
against which convergence can be checked. The parametrisation used is described in in Appendix D.
The experiments were implemented in Stan and run using pystan. Stan can adapt the step size and
mass matrix during warm-up iterations however we found this performed poorly in the extended
system cases we tested (potentially due to the very differing appropriate scales in the base and target
density) so we used a fixed step size of 0.5 when working in the extended system. The Stan models
for the original and extended Hamiltonian approaches are provided in Appendix G.
As a particular test case we considered a 19 dimensional Gaussian mixture relaxation corresponding to
a Boltzmann machine distribution on a 20 dimensional binary state. The Boltzmann machine weights
and biases were randomly generated so as to encourage multi-modality. The Gaussian base density
was specified by fitting a series of mean field variational approximations to the Boltzmann machine
distribution, and matching the first and second moments of a mixture of Gaussian components located
at the mean-field solutions. All chains were initialised at at a random sample from the fitted mixture.
NUTS and static HMC were used to perform MCMC inference in both the original and extended
Hamiltonian systems. Plots showing the distributional convergence of the four combinations are
shown in figure 1. This is measured by the root mean squared error (RMSE) between the empirical
and true first and second moments as the number of successive MCMC samples (for which |u| ≤ �1in the extended cases) included in the moment estimators is increased. The chains in the extended
system converge towards the target distribution, unlike in the original system where trace plots (not
shown) suggest the dynamic is struggling to move between isolated modes. The non-adaptive HMC
dynamic (which was not particularly carefully tuned) seems to perform better in the extended system
than NUTS — this may be due to the unusual geometry of the extended joint distribution.
Using (5) we can also estimate the normalising constant of the target distribution from the u samples
in the extended system chains. The mean absolute error in the logZ estimate was 0.027 ± 0.007
across the static HMC chains and 0.080 ± 0.017 across the NUTS chains. Both represent a significant
improvement over the 0.782 difference between the approximate log � and the true logZ. Further
experimental results for additional random relaxation distributions are shown in Appendix E.

4 Discussion

The method we have presented is a simple augmentation to the standard HMC approach which
can both help exploration of distributions with multiple isolated modes and allow estimation of the
normalisation constant of the target distribution. Our formulation leverages variational inference to
find a simple base distribution approximating the target distribution. It can therefore be seen within
the context of class of methods trying to ‘bridge the gap’ between variational inference and MCMC
methods [11], exploiting cheap optimisation based inference methods while still offering the potential
of asymptotically exact inference. Initial experimental results are promising however it is likely many
of the algorithmic choices we made are far from optimal and so it seems there is much potential to
both improve both the computational efficiency and ‘black-boxness’ of the approach.
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A Bounding the partition function

To derive the upper-bound we use Hölder’s inequality

∫
g(x)ℎ(x) dx ≤

{

∫
|g(x)|

1
a dx

}a{

∫
|ℎ(x)|

1
1−a dx

}1−a
(6)

where a ∈ [0, 1] and g and ℎ are measurable functions, and the definitions

∫
exp [−�(x)] dx = Z and ∫

exp [− (x)] dx = 1. (7)
From (3) (dropping the u dependence of � for clarity) we have

Z (�) = �−� ∫

{

exp [−�(x)]�
}{

exp [− (x)]1−�
}

dx.

Applying Hölder’s inequality (6) with g(x) = exp[−�(x)]� , ℎ(x) = exp[− (x)]1−� and a = �

Z (�) ≤ �−�
{

∫
|

|

|

exp [−�(x)]� ||
|

1
� dx

}� {

∫
|

|

|

exp [− (x)]1−� ||
|

1
1−� dx

}1−�

= �−�
{

∫
exp [−�(x)] dx

}� {

∫
exp [− (x)] dx

}1−�
.

Using (7) and taking logarithms of both sides gives
logZ (�) ≤ � (logZ − log � ) .

To derive the lower-bound we use Jensen’s inequality
'
{

∫
g(x)q(x) dx

}

≥ ∫
' {g(x)} q(x) dx, (8)

for a concave function ', normalised density q ∶ ∫ q(x) dx = 1 and measurable g.
Rearranging (3) and taking logarithms we have

logZ (�) + � log � = log
{

∫
exp {−� [�(x) −  (x)]} exp [− (x)] dx

}

.

Applying Jensen’s inequality (8) with ' = log, q = exp(− ) and g = exp {−� [� −  ]}

logZ (�) + � log � ≥ � ∫
[ (x) − �(x)] exp [− (x)] dx

= � ∫

{

logZ − logZ −
log exp [− (x)]
log exp [−�(x)]

}

exp [− (x)] dx

= � logZ − � ∫
exp [− (x)] log

exp [− (x)]
1
Z exp [−�(x)]

dx.

Recognising the integral in the last line as the Kullback–Leibler (KL) divergence from the base
distribution to the target distribution and rearranging we have

logZ (�) ≥ � (logZ − log � ) − �DKL
[

exp(− ) ‖ exp(−�)∕Z
]

.

By instead noting (3) can be rearranged into the form
logZ (�) + � log � − logZ = log

{

∫
exp {−(1 − �) [ (x) − �(x)]} 1

Z
exp [−�(x)] dx

}

,

by an equivalent series of steps we can also derive a bound using the reversed form of the KL
divergence from the target to the base distribution

logZ (�) ≥ � (logZ − log � ) − (1 − �)DKL
[

exp(−�)∕Z ‖ exp(− )
]

.
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B Estimating the target distribution normalising constant Z

We have that for some unknown normaliser C the marginal density on u is
p [u = u] = 1

C
�−�(u) ∫

exp {−�(u)�(x) − [1 − �(u)] (x)} dx.

Defining 1 =
{

u ∶ |u| ≤ �1
} we have that by construction �(u) = 1 ∀u ∈ 1 and so

ℙ
[

u ∈ 1
]

= ∫1

p [u = u] du = ∫1

1
C
�−1 ∫

exp {−�(x)} dx du = Z
C� ∫1

du =
2�1Z
C�

.

Likewise defining 2 =
{

u ∶ �2 ≤ |u| ≤ 1
} we have that �(u) = 0 ∀u ∈ 2 and so

ℙ
[

u ∈ 2
]

= ∫2

p [u = u] du = ∫2

1
C
�−0 ∫

exp {− (x)} dx du = 1
C ∫2

du =
2(1 − �2)

C
.

Taking a ratio of these two probabilities gives that
ℙ
[

u ∈ 1
]

ℙ
[

u ∈ 2
] =

�1Z
(1 − �2)�

⇒ Z =
1 − �2
�1

ℙ
[

u ∈ 1
]

ℙ
[

u ∈ 2
]�.

If we construct a Markov chain on u which leaves p [u = u] invariant, then a set of samples from the
chain {u(s)}Ss=1 can be used to form consistent estimators for ℙ [

u ∈ 1
] and ℙ [

u ∈ 2
]

ℙ
[

u ∈ 1
]

= lim
S→∞

1
S

S
∑

s=1

{

1
[

u(s) ∈ 1
]} and ℙ

[

u ∈ 2
]

= lim
S→∞

1
S

S
∑

s=1

{

1
[

u(s) ∈ 2
]}

,

where 1 [⋅] is the indicator function on some predicate, from which we can then form a consistent
estimator for Z

Z = lim
S→∞

1 − �2
�1

∑S
s=1

{

1
[

u(s) ∈ 1
]}

∑S
s=1

{

1
[

u(s) ∈ 2
]}
�.

C Temperature control function

θ1 θ2u

0

s

f

p5

p3

p1

θ1 θ2u

0

df

du

p5

p3

p1

Figure 2: Temperature control functions. Left: Temperature control function f (u) using three different
polynomial interpolations for �1 < u < �2 of order one, three and five. Right: Corresponding gradientof f with respect to u for each of the three polynomial interpolant orders shown in left panel.

The effective inverse temperature �(u) = 1 − f (u) is controlled via a temperature control function
f (u). Following the same approach as [6] this is piecewise defined as

f (u) =

⎧

⎪

⎨

⎪

⎩

0 ∶ |u| ≤ �1
s × pi

(

|u|−�1
�2−�1

)

∶ �1 < |u| < �2
s ∶ |u| ≥ �2

(9)
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where 0 < �1 < �2, 0 ≤ s ≤ 1 and pi is an interpolating polynomial with pi(0) = 0 and pi(1) = 1.
One possible choice is simply the linear function p1(x) = x however this leads to a discontinuous
df
du gradient. A cubic polynomial p3(x) = 3x2 − 2x3 as used in [6] leads to continuous f and df

du . If
continuity in d2f

du2 is also desired a quintic p5(x) = 6x5 − 15x4 + 10x3 can be used. Figure 2 shows f
and df

du for all three of these possibilities. For clarity the functions are plotted only for positive u - in
all cases the control function is even in u.

D Gaussian mixture Boltzmann machine relaxation

We define a Boltzmann machine distribution on a signed binary state s ∈ {−1, +1}DB =  as
ℙ [s = s] = 1

ZB
exp

(1
2
sTW s + sTb

)

ZB =
∑

s∈

{

exp
(1
2
sTW s + sTb

)}

.

We introduce an auxiliary real-valued vector random variable x ∈ ℝD with conditional distribution
p [x = x | s = s] = 1

(2�)D∕2
exp

[

−1
2
(

x −QTs
)T (x −QTs

)

]

with Q a DB × D matrix such that QQT = W + D for some diagonal D which makes W + D
positive semi-definite. In our experiments we set D as the solution to the semi-definite programme

min
D

{

�MAX [W +D]
}

∶ W +D ⪰ 0 (10)
where �MAX denote the maximal eigenvalue. In general the optimisedW +D lies on the semi-definite
cone and so has rank less than DB hence we have D < DB .
The resulting joint distribution on (x, s) is

p [x = x, s = s] = 1
(2�)D∕2ZB

exp
[

−1
2
xTx + sTQx − 1

2
sTQQTs + 1

2
sTW s + sTb

]

= 1
(2�)D∕2ZB

exp
[

−1
2
xTx + sT (Qx + b) − 1

2
sTDs

]

= 1

(2�)D∕2ZB exp
(

1
2 Tr[D]

) exp
[

−1
2
xTx

]

DB
∏

i=1

{

exp
[

si
(

qTi x + bi
)]}

.

where {qTi
}DB
i=1 are the DB rows of Q.

We can marginalise over the binary state s as each si is independent of all the others given x in the
joint distribution. This gives the Boltzmann machine relaxation density on x

p [x = x] = 2DB

(2�)D∕2ZB exp
(

1
2 Tr[D]

) exp
[

−1
2
xTx

]

DB
∏

i=1

{

cosh
[

qTi x + bi
]}

which is a specially structured Gaussian mixture density with 2DB components.
If we define p [x = x] = 1

Z exp [−�(x)] with

�(x) = 1
2
xTx −

DB
∑

i=1

{

log cosh
[

qTi x + bi
]}

then the normalisation constant Z of the relaxation density can be related to the normalising constant
of the corresponding Boltzmann machine distribution by

logZ = logZB + 1
2
Tr[D] + D

2
log(2�) −DB log 2.

It can also be shown that the first and second moments of the relaxation distribution are related to the
first and second moments of the corresponding Boltzmann machine distribution by

E [x] = QTE [s] and E
[

xxT
]

= QTE
[

ssT
]

Q + I .
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E Additional Boltzmann machine relaxation results

The figures below show convergence plots equivalent to those presented in the Experiments section
of the main paper for additional random Gaussian mixture Boltzmann machine relaxation instances
(the first row is a replication of those results for comparison). The weight and bias parameters of the
associated Boltzmann machine distribution were generated with exactly the same process as for the
test case presented in the paper just with a different random seed (the eigenspectrum of the weight
matrix was shaped to favour multiple large negative and positive eigenvalues and small bias values
sampled to discourage a small number of modes dominating).
For every target density 8 independent chains were run for each of: non-adaptive HMC in the original
Hamiltonian system, NUTS in the original Hamiltonian system, non-adaptive HMC in the extended
Hamiltonian system and NUTS in the extended Hamiltonian system. For each set of parameters a set
of local mean field approximations are fitted to the corresponding target density and used to calculate
moments for the Gaussian base density. The error between these base density moments (and log
normalisation constant) and true values are indicated by dotted black lines in the plots below as a
reference for the MCMC convergence.
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F One-dimensional Gaussian mixture toy example
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Figure 3: MCMC samples from running NUTS on univariate Gaussian mixture target density. (a) shows results
for standard Hamiltonian system (x only) and (b) and (c) are results for extended Hamiltonian system (x and
u). The top row shows trace plots, showing successive samples in Markov chain. In (b) top the x samples are
colour-coded according to the corresponding u value - red: |u| ≤ �1, blue |u| ≥ �2 and green otherwise. The red
lines in (c) correspond to ±�2 and the blue lines ±�1. Bottom row shows normalised sample histograms (shaded
regions). In (a) and (b) bottom plots target density is shown as a thick blue line. In (b) bottom plot base density
is additionally shown by a thick red line and histograms are shown for both x samples for which |u| ≤ �1 (blueregion, converging to target density) and |u| ≥ �2 (red region, converging to base density).

As an additional toy example to aid visualisation of the what the proposed method involves, we per-
formed inference in a univariate Gaussian mixture target with two well-separated mixture components.
Due to the trivial number of modes, for the base density we used a Gaussian with moments exactly
matched to the target and used log � = logZ rather than the matching moments to a mixture of varia-
tional approximations. Figure 3 shows results for single chains in both the original non-augmented
system (3a) and extended system (3b and 3c). The trace plot in Figure 3a shows that the dynamic
in the non-augmented system is unable to move between the two modes, with the chain remaining
confined to the same mode over all 2 × 105 updates, leading to an inaccurate estimate of the density
on x in the bottom histogram.
In contrast in the extended system the dynamic is able to regularly jump between the modes in x,
with the x samples for which |u| < �1 (blue points in 3b trace plot and blue region in 3b density
plot) converging quickly in distribution to the multi-modal target density, and correspondingly the x
samples for which |u| ≥ �2 converging to the base density. The plots in 3c show that the u chain is
exploring its full marginal distribution well, with minimal autocorrelation evident in the trace plot
and the marginal showing an approximately equal flat density for |u| ≤ �1 and |u| ≥ �2 as expecteddue to using the exact relationship log � = logZ. The density for �1 < |u| < �2 shows a pronounceddip, this a result of the non-zero KL divergence between base and target densities. Although the
dynamic is still able to easily move across the moderate potential barrier in this toy problem, in more
complex systems for which the divergence between base and target will generally be larger it can
become increasingly difficult for the dynamic to explore the full range of u values.
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G Stan model files for Boltzmann machine relaxation experiments

Standard Hamiltonian system with no temperature augmentation:
f un c t i on s {

/ / V e c t o r i s e d l og h y p e r b o l i c c o s i n e h e l p e r .
vec to r l og_co sh ( vec to r y ){

re turn y + l og (1 + exp (−2 ∗ y ) ) − l og ( 2 ) ;
}
/ / Log p r o b a b i l i t y d e n s i t y o f Bol t zmann machine r e l a x a t i o n .
r e a l bm_ r e l a x a t i o n _ l p d f ( vec to r x , matrix q , vec to r b ){

re turn sum ( l og_co sh ( q ∗ x + b ) ) − 0 . 5 ∗ x ’ ∗ x ;
}

}
data {

/ / Number o f d imens ion i n Bol t zmann machine b i n a r y s t a t e .
i n t <lower=0> n_dim_b ;
/ / Number o f d imen s i on s i n r e l a x a t i o n c o n f i g u r a t i o n s t a t e .
i n t <lower=0> n_dim_r ;
/ / R e l a x a t i o n Q ma t r i x pa rame t e r s .
matrix [ n_dim_b , n_dim_r ] q ;
/ / R e l a x a t i o n b i a s v e c t o r pa rame t e r s .
vec to r [ n_dim_b ] b ;

}
parameters {

/ / C o n f i g u r a t i o n s t a t e .
vec to r [ n_dim_r ] x ;

}
model {

/ / S e t t o t a r g e t t o Bol t zmann machine r e l a x a t i o n l og d e n s i t y .
x ~ bm_ r e l a x a t i o n ( q , b ) ;

}

Extended Hamiltonian system with temperature control variable:
f un c t i on s {

/ / V e c t o r i s e d l og h y p e r b o l i c c o s i n e h e l p e r .
vec to r l og_co sh ( vec to r y ){

re turn y + l og (1 + exp (−2 ∗ y ) ) − l og ( 2 ) ;
}
/ / Log p r o b a b i l i t y d e n s i t y o f Bol t zmann machine r e l a x a t i o n .
r e a l bm_ r e l a x a t i o n _ l p d f ( vec to r x , matrix q , vec to r b ){

re turn sum ( l og_co sh ( q ∗ x + b ) ) − 0 . 5 ∗ x ’ ∗ x ;
}
/ / C i r c u l a r l y wraps unbounded i n p u t t o [−1 , 1 ] .
r e a l wrap ( r e a l u ) {

re turn fmod ( u + 1 , 2 ) + 2 ∗ ( u < −1) − 1 ;
}
/ / P i e c ew i s e d e f i n e d i n v e r s e t empe r a t u r e c o n t r o l f u n c t i o n .
r e a l inv_ temp ( r e a l u , r e a l t h e t a _1 , r e a l t h e t a _ 2 ) {

r e a l z ;
z = ( fabs ( u ) − t h e t a _ 1 ) / ( t h e t a _ 2 − t h e t a _ 1 ) ;
i f ( z <= 0)

re turn 1 ;
e l s e i f ( z >= 1)

re turn 0 ;
e l s e

re turn 1 − z ^3 ∗ ( z ∗ (6 ∗ z − 15) + 1 0 ) ;
}

}
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data {
/ / Number o f d imens ion i n Bol t zmann machine b i n a r y s t a t e .
i n t <lower=0> n_dim_b ;
/ / Number o f d imen s i on s i n r e l a x a t i o n c o n f i g u r a t i o n s t a t e .
i n t <lower=0> n_dim_r ;
/ / R e l a x a t i o n Q ma t r i x pa rame t e r s .
matrix [ n_dim_b , n_dim_r ] q ;
/ / R e l a x a t i o n b i a s v e c t o r pa rame t e r s .
vec to r [ n_dim_b ] b ;
/ / Tempera ture c o n t r o l f u n c t i o n lower t h r e s h o l d .
r e a l t h e t a _ 1 ;
/ / Tempera ture c o n t r o l f u n c t i o n upper t h r e s h o l d .
r e a l t h e t a _ 2 ;
/ / Ta rge t l og n o rma l i s a t i o n c o n s t a n t app rox ima t i on .
r e a l l o g _ z e t a ;
/ / Covar iance ma t r i x o f Gauss ian app rox ima t i on t o t a r g e t .
matrix [ n_dim_r , n_dim_r ] s igma ;
/ / Mean v e c t o r o f Gauss ian app rox ima t i on t o t a r g e t .
vec to r [ n_dim_r ] mu ;
/ / Tempera ture c o n t r o l v a r i a b l e s c a l i n g f a c t o r .
r e a l s ;

}
transformed data {

/ / Approx imate c o va r i a n c e Cho le sky f a c t o r .
matrix [ n_dim_r , n_dim_r ] cho l_ s igma ;
cho l_ s igma = cholesky_decompose ( s igma ) ;

}
parameters {

/ / C o n f i g u r a t i o n s t a t e .
vec to r [ n_dim_r ] x ;
/ / Unwrapped t empe r a t u r e c o n t r o l v a r i a b l e .
r e a l u_unwrapped ;

}
transformed parameters {

/ / Tempera ture c o n t r o l v a r i a b l e wrapped t o [−1 , 1 ] .
rea l<lower=−1 , upper=1> u ;
/ / I n v e r s e t empe r a t u r e .
rea l<lower=0 , upper=1> be t a ;
u = wrap ( u_unwrapped / s ) ;
b e t a = inv_ temp ( u , t h e t a _1 , t h e t a _ 2 ) ;

}
model {

/ / I n v e r s e t empe r a t u r e we igh t ed t a r g e t d e n s i t y term .
t a r g e t += b e t a ∗ bm_ r e l a x a t i o n _ l p d f ( x | q , b ) − b e t a ∗ l o g _ z e t a ;
/ / I n v e r s e t empe r a t u r e we igh t ed base d e n s i t y term .
t a r g e t += (1 − b e t a ) ∗ mul t i_normal_cho le sky_ lpdf ( x | mu , cho l_ s i gma ) ;

}
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