

Robust Variational Inference

Michael Figurnov Kirill Struminsky Dmitry Vetrov 1@figurnov.ru k.struminsky@gmail.com vetrovd@yandex.ru michael@figurnov.ru

Motivation

- Real-world datasets often include outliers and noisy objects. Cleaning the data might be impractical
- Suppose that our probabilistic model can only deal with the clean objects
- We develop a scalable **robust** inference procedure that ignores the objects which cannot be explained by the data model (objects with low evidence)

Robust model evidence

- $lackbreak p(x_i| heta)$ is evidence for a data point x_i for a model with parameters heta
- lacksquare The robust evidence is obtained by adding a regularization coefficient arepsilon>0 to the evidence:

$$\sum_{i=1}^{N} \log p(x_i|\theta) \to \sum_{i=1}^{N} \log(\varepsilon + p(x_i|\theta)) \tag{1}$$

to define the robust model evidence

- lacksquare The robust model evidence penalizes the model for small $p(x_i| heta)$ less. If $p(x_i| heta) \ll arepsilon$, the evidence can take arbitrarily small values, while the robust evidence is bounded from below $\log(\varepsilon + p(x_i|\theta)) > \log \varepsilon$.
- The choice of ε is important. Intuitively, the higher the ε , the more training objects are ignored

Robust evidence lower bound $\mathcal{L}_{\varepsilon}$

 \blacksquare Consider a model with local latent variables z (e.g., variational autoencoder)

$$p(X, Z|\theta) = \prod_{i=1}^{N} p(x_i, z_i|\theta)$$
 (2)

 \blacksquare Standard evidence lower bound \mathcal{L} :

$$\mathcal{L}(X,\theta,\phi) = \sum_{i=1}^{N} \mathbb{E}_{q(z_i|x_i,\phi)} \log \frac{p(x_i,z_i|\theta)}{q(z_i|x_i,\phi)} \le \sum_{i=1}^{N} \log p(x_i|\theta)$$
 (3)

for any variational distribution $q(z_i|x_i,\phi)$

Robust evidence lower bound $\mathcal{L}_{\varepsilon}$:

$$\mathcal{L}_{\varepsilon}(X, \theta, \phi) = \sum_{i=1}^{N} \mathbb{E}_{q(z_i|x_i, \phi)} \log \left[\varepsilon + \frac{p(x_i, z_i|\theta)}{q(z_i|x_i, \phi)} \right] \leq \sum_{i=1}^{N} \log \left[\varepsilon + p(x_i|\theta) \right] \quad (4)$$

Proof:

$$egin{aligned} \log\left[arepsilon+p(x_i| heta)
ight] &= \log\left[\mathbb{E}_{q(z_i|x_i,\phi)}\left(arepsilon+rac{p(x_i,z_i| heta)}{q(z_i|x_i,\phi)}
ight)
ight] \ \end{aligned} \ \{ ext{Jensen's inequality} \} &\geq \mathbb{E}_{q(z_i|x_i,\phi)}\log\left[arepsilon+rac{p(x_i,z_i| heta)}{q(z_i|x_i,\phi)}
ight] \end{aligned}$$

lacksquare Both $oldsymbol{\mathcal{L}}$ and $oldsymbol{\mathcal{L}}_{arepsilon}$ can be optimized with stochastic gradient ascent by using the reparametrization trick

Analysis of the robust evidence lower bound $\mathcal{L}_{\varepsilon}$

lacksquare For a fixed x_i, z_i , the gradients of ${\cal L}$ and the robust version ${\cal L}_{arepsilon}$ have the same direction but different magnitudes:

$$\nabla \log \left[\varepsilon + \frac{p(x_i, z_i | \theta)}{q(z_i | x_i, \phi)} \right] = \left(\frac{\frac{p(x_i, z_i | \theta)}{q(z_i | x_i, \phi)}}{\varepsilon + \frac{p(x_i, z_i | \theta)}{q(z_i | x_i, \phi)}} \right) \nabla \log \left[\frac{p(x_i, z_i | \theta)}{q(z_i | x_i, \phi)} \right]$$
 (5

- The unlikely objects contribute less to the gradients
 - When $\frac{p(x_i,z_i|\theta)}{q(z_i|x_i,\phi)} \ll \varepsilon$, the scalar factor is close to zero. When $\frac{p(x_i,z_i|\theta)}{q(z_i|x_i,\phi)} \gg \varepsilon$, it is close to one.

Choosing the robustness parameter ε

- \blacksquare The choice of ε depends on the current evidence of the dataset which changes during training
- We choose the following form of ε :

$$\varepsilon = \alpha \exp\left(\frac{\mathcal{L}(X, \theta, \phi)}{|X|}\right), \ \alpha > 0$$
 (6)

In practice, we estimate the mean evidence lower bound using exponential moving average with $\gamma=0.99$. We update ε after each gradient step

Noisy data experiment

- MNIST and OMNIGLOT datasets with stochastic binarization (pixels are Bernoulli random variables with p = intensity) as in (Burda et al., 2016)
- Noise object: intensity of all pixels is the mean intensity of the training set
- Model: variational auto-encoder (VAE) with 50 Gaussian latent variables
- Robust VAE is trained with $\mathcal{L}_{\varepsilon}$, VAE with \mathcal{L}
- lacksquare Robust VAE outperforms VAE for a wide range of lpha

Figure: Left: MNIST, right: OMNIGLOT. Log-likelihood estimates of robust (rVAE) and non-robust models (VAE) of the clean test set. Models were trained on synthetically corrupted datasets, labels specify (data: noise) ratio in the experiments.

Robust VAE describes noise significantly worse than VAE

	Robust VAE						VAE
$\log lpha$	-50	-10	0	10	50	100	- -
MNIST	-307.23	-308.33	-312.98	-308.15	-395.96	-441.67	-304.76
OMNIGLOT	-224.80	-227.94	-229.85	-241.21	-359.94	-397.94	-224.75

Table: Log-likelihood estimates of **synthetic noise**. The ratio (data: noise) is fixed to (1:2)

Pure data experiment

We trained the VAE and Robust VAE models from the previous experiment on the uncorrupted datasets. Robust VAE slightly outperforms VAE in this setting for low α , suggesting a regularization effect

Figure: Left: MNIST, right: OMNIGLOT. Log-likelihood estimates of robust (rVAE) and non-robust (VAE) models on the test set

Future work

- lacksquare Design an inference procedure for $m{arepsilon}$
- Compare to Wang et al. (2016)
- Evaluate on other datasets

References

Y. Burda, R. Grosse, and R. Salakhutdinov, "Importance weighted autoencoders," ICLR, 2016. Y. Wang, A. Kucukelbir, and D. M. Blei, "Reweighted data for robust probabilistic models," arXiv preprint arXiv:1606.03860, 2016.