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Motivation

Real-world datasets often include outliers and noisy objects. Cleaning the data
might be impractical

Suppose that our probabilistic model can only deal with the clean objects

We develop a scalable robust inference procedure that ignores the objects
which cannot be explained by the data model (objects with low evidence)

Robust model evidence

p(xi|θ) is evidence for a data point xi for a model with parameters θ

The robust evidence is obtained by adding a regularization coefficient ε > 0 to
the evidence:

N∑
i=1

log p(xi|θ)→
N∑
i=1

log(ε+ p(xi|θ)) (1)

to define the robust model evidence

The robust model evidence penalizes the model for small p(xi|θ) less. If
p(xi|θ)� ε, the evidence can take arbitrarily small values, while the robust
evidence is bounded from below log(ε+ p(xi|θ)) > log ε.

The choice of ε is important. Intuitively, the higher the ε, the more training
objects are ignored

Robust evidence lower bound Lε

Consider a model with local latent variables z (e.g., variational autoencoder)

p(X,Z|θ) =
N∏
i=1

p(xi, zi|θ) (2)

Standard evidence lower bound L:

L(X, θ, φ) =
N∑
i=1

Eq(zi|xi,φ) log
p(xi, zi|θ)
q(zi|xi, φ)

≤
N∑
i=1

log p(xi|θ) (3)

for any variational distribution q(zi|xi, φ)
Robust evidence lower bound Lε:

Lε(X, θ, φ) =
N∑
i=1

Eq(zi|xi,φ) log
[
ε+

p(xi, zi|θ)
q(zi|xi, φ)

]
≤

N∑
i=1

log [ε+ p(xi|θ)] (4)

Proof:

log [ε+ p(xi|θ)] = log

[
Eq(zi|xi,φ)

(
ε+

p(xi, zi|θ)
q(zi|xi, φ)

)]
{Jensen’s inequality} ≥ Eq(zi|xi,φ) log

[
ε+

p(xi, zi|θ)
q(zi|xi, φ)

]
Both L and Lε can be optimized with stochastic gradient ascent by using the
reparametrization trick

Analysis of the robust evidence lower bound Lε

For a fixed xi, zi, the gradients of L and the robust version Lε have the same
direction but different magnitudes:

∇ log

[
ε+

p(xi, zi|θ)
q(zi|xi, φ)

]
=

 p(xi,zi|θ)
q(zi|xi,φ)

ε+ p(xi,zi|θ)
q(zi|xi,φ)

∇ log

[
p(xi, zi|θ)
q(zi|xi, φ)

]
(5)

The unlikely objects contribute less to the gradients
When p(xi,zi|θ)

q(zi|xi,φ) � ε, the scalar factor is close to zero.

When p(xi,zi|θ)
q(zi|xi,φ) � ε, it is close to one.

Choosing the robustness parameter ε

The choice of ε depends on the current evidence of the dataset which changes
during training

We choose the following form of ε:

ε = α exp

(L(X, θ, φ)
|X|

)
, α > 0 (6)

In practice, we estimate the mean evidence lower bound using exponential
moving average with γ = 0.99. We update ε after each gradient step

Noisy data experiment

MNIST and OMNIGLOT datasets with stochastic binarization (pixels are
Bernoulli random variables with p = intensity) as in (Burda et al., 2016)

Noise object: intensity of all pixels is the mean intensity of the training set

Model: variational auto-encoder (VAE) with 50 Gaussian latent variables

Robust VAE is trained with Lε, VAE with L
Robust VAE outperforms VAE for a wide range of α
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Figure: Left: MNIST, right: OMNIGLOT. Log-likelihood estimates of robust (rVAE) and
non-robust models (VAE) of the clean test set. Models were trained on synthetically corrupted

datasets, labels specify (data : noise) ratio in the experiments.

Robust VAE describes noise significantly worse than VAE

Robust VAE VAE

logα -50 -10 0 10 50 100 -

MNIST -307.23 -308.33 -312.98 -308.15 -395.96 -441.67 -304.76

OMNIGLOT -224.80 -227.94 -229.85 -241.21 -359.94 -397.94 -224.75

Table: Log-likelihood estimates of synthetic noise. The ratio (data : noise) is fixed to (1:2)

Pure data experiment

We trained the VAE and Robust VAE models from the previous experiment on
the uncorrupted datasets. Robust VAE slightly outperforms VAE in this setting
for low α, suggesting a regularization effect
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Figure: Left: MNIST, right: OMNIGLOT. Log-likelihood estimates of robust (rVAE) and
non-robust (VAE) models on the test set

Future work

Design an inference procedure for ε

Compare to Wang et al. (2016)

Evaluate on other datasets
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