Robust Variational Inference
Michael Figurnov  Kirill Struminsky  Dmitry Vetrov

michael@figurnov.ru  k.struminsky@gmail.com  vetrovd@yandex.ru p(B|/A)lyesgroup.ru

NATIONAL RESEARCH

UNIVERSITY

m Real-world datasets often include outliers and noisy objects. Cleaning the data = MNIST and OMNIGLOT datasets with stochastic binarization (pixels are

might be impractical Bernoulli random variables with p = intensity) as in (Burda et al., 2016)
m Suppose that our probabilistic model can only deal with the clean objects

Noise object: intensity of all pixels is the mean intensity of the training set
m We develop a scalable robust inference procedure that ignores the objects

which cannot be explained by the data model (objects with low evidence)

Model: variational auto-encoder (VAE) with 50 Gaussian latent variables
Robust VAE is trained with £., VAE with £
Robust VAE outperforms VAE for a wide range of o

Robust model evidence

m p(x;|0) is evidence for a data point a; for a model with parameters 6

m [ he robust evidence is obtained by adding a regularization coefficient € > 0 to 8
the evidence: 2
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Figure: Left: MNIST, right: OMNIGLOT. Log-likelihood estimates of robust (rVAE) and
non-robust models (VAE) of the clean test set. Models were trained on synthetically corrupted

datasets, labels specify (data : noise) ratio in the experiments.

p(x;|0) K e, the evidence can take arbitrarily small values, while the robust

evidence is bounded from below log(e + p(x;|60)) > loge.

m [he choice of € is important. Intuitively, the higher the &, the more training
objects are ignored

m Robust VAE describes noise significantly worse than VAE

Robust evidence lower bound L. Robust VAE VAE
log o -50 -10 0 10 50 100 :
m Consider a model with local latent variables z (e.g., variational autoencoder) MNIST  -307.23 -308.33 -312.98 -308.15 -395.96 -441.67 -304.76
N OMNIGLOT -224.80 -227.94 -229.85 -241.21 -359.94 -397.94 -224.75
p(X,210) = [ [ p(xi, zil6) (2) |
i—1 Table: Log-likelihood estimates of synthetic noise. The ratio (data : noise) is fixed to (1:2)
m Standard evidence lower bound L:
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— q(z;|zi, @) — the uncorrupted datasets. Robust VAE slightly outperforms VAE in this setting
R for low ¢, suggesting a regularization effect
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m Both £ and L. can be optimized with stochastic gradient ascent by using the 2 y o
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Analysis of the robust evidence lower bound L. - it
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u For a fixed @;, z;, the gradients of £ and the robust version L. have the same Figure: Left: MNIST, right: OMNIGLOT. Log-likelihood estimates of robust (FVAE) and
direction but different magnitudes: non-robust (VAE) models on the test set
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m The unlikely objects contribute less to the gradients
= When Z((Zlij,gg & e, the scalar factor is close to zero. Future work
= When Z((:ilj Z; > g, it is close to one.
m Design an inference procedure for &

m Compare to Wang et al. (2016)
m Evaluate on other datasets

Choosing the robustness parameter ¢

m [ he choice of £ depends on the current evidence of the dataset which changes
during training

= We choose the following form of =
L(X,0,0)

€:anp< ),a>0 (6)
| X | Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoencoders,” /CLR, 2016.
m In practice, we estimate the mean evidence lower bound using exponential Y. Wang, A. Kucukelbir, and D. M. Blei, “Reweighted data for robust probabilistic models,” arXiv

moving average with v = 0.99. We update € after each gradient step preprint arXiv:1606.03860, 2016.




