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Abstract

Variational inference is a powerful tool for approximate inference. However,
it mainly focuses on the evidence lower bound as variational objective and the
development of other measures for variational inference is a promising area of
research. This paper proposes a robust modification of evidence and a lower
bound for the evidence, which is applicable when the majority of the training
set samples are random noise objects. We provide experiments for variational
autoencoders to show advantage of the objective over the evidence lower bound on
synthetic datasets obtained by adding uninformative noise objects to MNIST and
OMNIGLOT. Additionally, for the original MNIST and OMNIGLOT datasets we
observe a small improvement over the non-robust evidence lower bound.

1 Introduction

One of the common approaches to approximate Bayesian inference, especially popular for large-scale
models, is maximization of variational lower bound on the model’s evidence. In recent years several
new objectives were proposed. Burda et al. (2016) gave a tighter evidence lower bound (ELBO)
which exploits multiple samples from the approximating distribution. Li and Turner (2016) extended
traditional variational inference with Renyi divergence-inspired evidence bounds. These bounds were
shown to be more effective for certain unsupervised learning problems.

In this paper we consider the problem of unsupervised learning for data which is known to contain
many uninformative (noise) objects. First, we replace the traditional log-evidence

∑
i log p(xi)

with a robust counterpart
∑
i log(ε + p(xi)). This function ignores the objects with low evidence

p(xi)� ε. Next, we derive a variational lower bound on robust model evidence which also shares
the same robustness property. We show that by maximizing this lower bound we can successfully
train variational autoencoders even in the scenarios where the noise objects comprise the majority
of the training dataset. An alternative approach, proposed by Wang et al. (2016), is to reweight the
per-object likelihood terms with additional local latent variables. In future, we plan to compare to
this approach.

2 Robust variational inference

In what follows we consider a parametric latent variable model p(x, z|θ) = p(x|z, θ)p(z) with local
latent variables z and parameter θ. We derive a lower bound for the robust evidence and study its
properties. Finally, following (Kingma and Welling, 2014), we propose a training procedure for
variational autoencoders with the robust evidence lower bound.
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2.1 Robust evidence lower bound

We start off with the robust log-evidence
∑N
i=1 log(ε+ p(xi|θ)). First, we rewrite it for each sample:

log [ε+ p(xi|θ)] = log

[
Eq(zi|xi,φ)

(
ε+

p(xi, zi|θ)
q(zi|xi, φ)

)]
(1)

and then apply Jensen’s inequality to obtain the robust evidence lower bound Lε(X, θ, φ)

N∑
i=1

log(ε+ p(xi|θ)) ≥
N∑
i=1

Eq(zi|xi,φ) log

[
ε+

p(xi, zi|θ)
q(zi|xi, φ)

]
= Lε(X, θ, φ). (2)

The robust evidence bound is tight when the variational distribution q(zi|xi, φ) is the true posterior
p(zi|xi, θ).

This objective exhibits robustness to the objects with the low value of p(xi,zi|θ)
q(zi|xi,φ)

. For a fixed sample
(xi, zi) explicit computation gives

∇ log

[
ε+

p(xi, zi|θ)
q(zi|xi, φ)

]
=

(
p(xi, zi|θ)
q(zi|xi, φ)

[
ε+

p(xi, zi|θ)
q(zi|xi, φ)

]−1)
∇ log

p(xi, zi|θ)
q(zi|xi, φ)

. (3)

Therefore, the stochastic gradient of the robust evidence lower bound has the same direction as the
gradient of the non-regularized ELBO L for this sample (xi, zi):

∇ log
p(xi, zi|θ)
q(zi|xi, φ)

. (4)

When p(xi,zi|θ)
q(zi|xi,φ)

� ε, the scalar factor before this gradient is close to zero and the sample does not

contribute to the parameter update. On the other hand, when p(xi,zi|θ)
q(zi|xi,φ)

> ε, the factor lies in [ 12 , 1)

and we obtain almost the same update as for the non-regularized ELBO.

To benefit from the robustness one has to choose ε carefully. Underestimating ε results in poor
regularization, overestimating ε results in significant distortion of the evidence. It is natural choose ε
value to be comparable to the log-likelihood of the dataset. We propose to use a dynamically changing
value for ε, specifically a multiple of the mean evidence lower bound:

ε = α exp

(
L(X, θ, φ)
|X|

)
. (5)

Here α > 0 controls the regularization effect. As α→ 0 the robust evidence lower bound converges
to ELBO.

2.2 Training procedure

To train the model, a stochastic gradient based optimizer is used to maximize the objective function.
We use Gaussian latent variables and employ reparametrization trick to obtain the gradient estimates.
Firstly, we train the model for one epoch with the evidence lower bound as an objective and initialize
log ε as the mean ELBO value at the first epoch. Secondly, we fix logα and then train the model
using the robust evidence lower bound as an objective. After each gradient step we update log ε with
the mean ELBO of the previous batch using exponential smoothing. Moreover, after each epoch we
update log ε with the mean ELBO from the previous epoch.
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Figure 1: Left: noisy MNIST, right: noisy OMNIGLOT. The proportion of (original:noise) data
points is varied from 2:1 to 1:2. We compared test log-likelihood of the original dataset for variational
autoencoders (VAE) and the proposed robust autoencoders (rVAE) with different regularization
parameters α (note that the x-axis is not uniform). rVAE successfully ignores the noise data points
while VAE’s quality degrades significantly.
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Figure 2: Left: MNIST, right: OMNIGLOT. Log-likelihood estimates for the robust autoencoder
and the variational autoencoder trained without the synthetic noise. In this setting, choosing a very
small value of logα results in a regularization effect leading to a small improvement over VAE (0.7
nats for MNIST, 0.74 nats for OMNIGLOT).

3 Experiments

In our experiments we used a model with the following architecture: fully-connected encoder and
decoder had two hidden layers with 200 units, stochastic layer had 50 hidden units. Parametric ReLU
(He et al., 2015) activation units were used for the deterministic layers.

We used Adam (Kingma and Ba (2015)) with parameters β1 = 0.99, β2 = 0.999, ε = 10−4 for
objective maximization. Each model was trained for 1000 epochs with a fixed learning rate of 10−3.
Batch size was set to 200. The following rule was used to update ε after processing of each batch:
log εnew = 0.99 log εold + 0.01 log ε, where ε is estimated using eqn. (5).

In the first experiment we compared the robust variational autoencoders with autoencoders on two
synthetic datasets. We used MNIST and OMNIGLOT (Lake et al., 2015) as real-world base sets,
and then added uninformative data points, i.e. 28 ∗ 28 images with each pixel’s intensity equal to
the mean pixel intensity of the original dataset. Due to dynamic binarization (Burda et al., 2016)
these data points act as noise. We varied the relation of the number of the original data points to the
number of noise data points from 2:1 to 1:2.

To evaluate the models performance we computed mean log-likelihood estimate over 200 samples on
MNIST and OMNIGLOT test sets (without any noise). The range of logα was selected empirically:
we started with logα = −50 and then increased it to find the optimal value with respect to the test
likelihood.
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Results of the first experiment are shown in Figure 1. The robust autoencoder managed to fit the data
despite noise. At the same time, VAEs test log-likelihood significantly decreased as the fraction of
noise increased. The optimal value of α depends on base dataset and fraction of noise. For example,
for OMNIGLOT the best logα increased monotonically with the fraction of noise. However, for
MNIST there was no such simple pattern.

In the second experiment we have compared rVAEs and VAEs on datasets without synthetic noise.
We used the same network architecture and optimization approach. Test log-likelihoods for MNIST
and OMNIGLOT datasets are presented in Figure 2. In this setting the best results were achieved
when α almost coincided with zero. We observed a small improvement of the robust autoencoder
over the variational autoencoder, suggesting that robust VAE provides a beneficial regularization
effect.

4 Conclusion

We presented a new variational objective for approximate inference and showed its advantage in the
training setting where noisy objects comprise the majority of a dataset. Additionally, the proposed
robust variational objective provides small regularization effect on datasets without any artificial
noise. In future we plan to incorporate the regularization parameter into the probabilistic model,
design a procedure for automatic selection of the parameter and evaluate the model on a real-world
noisy dataset.
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