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Smoothing Estimates of Diffusion Processes
PICE Smoother (PICES)
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In some cases, the optimal control shows discontinuities in time. The correct approximation of these    
discontinuities has a major impact on the scalability of the method to very large time series. How can we 
ensure that the neural network learns efficiently with enough time resolution to scale the method?

We need a better understanding of the impact of the network architecture on the efficiency of the sampler. 
What type of architectures and transfer functions facilitate high temporal resolution? 
Other parameterizations of the controllers may prove more useful, especially when the time scale of the 
optimal control function is very short.

The introduction of an adaptive annealing procedure is beneficial when the variance of the estimates are 
too large to learn accurate parameters. However, this introduces a bias in the gradient estimation. 
How does this affect the performance of the controller after convergence? 
How to choose the annealing threshold?
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Access to complex dynamic phenomena is usually limited by indirect, noisy measurements. Given a time            
sequence of observations, we have to infer the underlying process to learn more about the system. 
For instance in Neuroscience, the brain activity of humans during experiments has to be measured by               
non-invasive methods like fMRI or EEG.

 

Mathematically, this problem is formulated as a Bayesian inference problem, where the aim is to find the 
posterior/smoothing distribution over processes given the time series. The exact solution to this problem is 
in general intractable when the dynamics is non-linear or the observation is a non-linear function of the 
hidden process. Hence, approximate methods are required to overcome this difficulty.

One can resort to sampling methods such as Sequential Monte Carlo methods. However, a major challenge 
for sampling from the posterior distribution is the weight degeneracy of importance sampling schemes, 
which gives a small effective sampling size (ESS). The degeneracy problem is especially acute when the 
prior deviates from the posterior due to model mismatch.

We present PICE Smoother, a novel method to sample efficiently from the smoothing distribution over 
hidden diffusion processes in continuous time. We use an adaptive importance sampler based on the path 
integral cross-entropy (PICE) control theory.

The prior process is adapted with a control drift, the importance controller. 

This adaptation reduces the total cost incurred by the entire time series. 
This minimization is accompanied by an increase in the sampling efficiency.

The parametrization of the importance controller is arbitrary. Here, we use a deep neural network with         
8 hidden layers and 50 nodes width each.

Our results on fMRI show that adaptive importance sampling via a controlled diffusion process improves 
the efficiency of the sampler five orders of magnitude. 

The feedback control accounts in a certain degree for model mismatch due to the lack of inputs.

There is no restriction on the drift and diffusion terms of the prior process, nor on the observation model.

The sampling and the gradient computations are easily parallelizable and can be implemented efficiently 
in a distributed manner.

PICES is an alternative to particle smoothing methods.
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Step 1: Generate Trajectories from the Adapted Stochastic Differential Equation

Step 2: Calculate Cost 

Step 3: Update

PICES significantly reduces the weight degeneracy by adapting the process with a feedback   
controller. This is done by minimizing the Kullback-Leibler divergence between the posterior and 
the proposal distribution.

8 Layers

50 Nodes

The feedback control  U(Xt,t)    adapts the prior/uncontrolled dynamics
Propagate the N particles via numerical integration of the adapted process

Draw N particles from proposal distribution 

Compute importance sampling (IS) correction 

Initialize controller at zero
Set prior p(Xo)  as first proposal 
distribution

Update rule for the control parameters Ol comes from the cross-entropy method for diffusion              
processes
The weighted statistics approximate statistics with respect to the posterior
Use statistics of the posterior marginal at t = 0   to update the proposal distribution ql(X0loi)  in step 0

The cost  Si contains the log-likelihood  log(g(ylx))  and the IS correction term for diffusion               
processes. The cost defines the IS weights wi) , that normalized give a point-mass representation of 
the posterior

A good parametrization of the controller is crucial. 
Better approximations to the optimal control  
function result in more efficient IS.

The choice of the parameterization of the optimal 
control is an open question.

PICE places no restriction on the parametric form 
of the importance control function.

Deep Neural Networks (DNN) posses the flexibility 
needed to approximate complex functions.

The choice of DNN alleviates the burden of       
constructing a “good” parametrization.

Pitfall: over parametrization has a negative 
impact on the ESS.

Note: A shallow network or a simple linear feedback controller performed significantly worse for fMRI data.

Note: No Input assumed
Smoothing estimates of the hidden neuronal activity in 
the motor cortex (blue: mean; red: standard deviation). 
Black star: maximum of the mean estimate. Red star: 
measured response time.
The values of the fMRI time-series are scaled with a 
factor of 8 for comparison (green).

Note: No Input assumed

Estimate the neuronal activity of a subject during an experiment, where subjects had to respond to stimuli 
by pressing a button.
The motor cortex is modeled as a 1-D process:

The BOLD response to the neuronal activity is a non-linear 4D coupled system. 
Observation noise is Gaussian.

To reconstruct the signal in the motor cortex we iterate PICES 45 times. Per iteration used 500 CPUs with 
600 particles each.

Comparison of estimates: standard Bootstrap Filter-
Smoother  (black) and PICES (blue)
The CPU time for both methods is about 40 minutes.
For BFS we used 500 CPUs with N =10^4 particles per 
CPU.

Effective Sampling Size vs iterations (left) for four fMRI time series: The initial fraction of ESS is around     
3 x 10^{ -6, i.e. only one particle out of the N=3 x 10^{5}  has a significant contribution to the estimations. 
Right: The mean cost  E_{u}[S]under the control at each iteration.


