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Abstract

We present a novel method to sample efficiently from the posterior distribution
over hidden diffusion processes given a time series of noisy observations. We
use high-performance computing to increase iteratively the effective sample size
(ESS) of the posterior, or "smoothing" distribution. This is done using an adaptive
importance sampler based on the path integral cross entropy (PICE) control theory
[[16]]. We call this method PICE Smoother (PICES). The novelty of this method
vis-a-vis [16] and [24] is the implementation of the learning rule (3) to deep neural
networks, its comparison to the bootstrap particle filter-smoother and its application
to fMRI data.

Introduction

Given a time series of .J observations yo.7 = (Yt,, Yta, - - -» Y, ) With0 < 3 < --- <t; <T € Rwe
are interested in the posterior distribution over continuous time hidden processes (9,7 = {21 };¢(o 7]

on the interval [0, 7] C R. This posterior distribution is conditioned on two aspects of the model.
First, a stochastic differential equation (SDE) describes the dynamics of the hidden state,

dIt = F(.’L‘t, t)dt + O'dyn(.’llt, t)th (1)

where dW, ~ N (0, dt) is Gaussian distributed with variance dt. Second, the observation model
g(y|x) gives the probability to observe y conditioned on the latent state .

When a time discretization dt is chosen, this process corresponds to a first order Markov process with
a transition probability f(x¢4q:|2+) given by a Gaussian with mean x; + F'(z¢,t)dt and a covariance
3y (¢, t)dt. This defines a prior distribution p(x(o 1) := HST:() f(zstat|zs)p(xo) over all paths

following , where s € [0, 7] and p(z) is the prior distribution over initial conditions. We call a
"particle" an entire path generated by this type of processes.

Additionally, the observation model defines the likelihood p(yo.7|x[0,17) := H‘jjzl 9(yt, |, ). Thus,
the smoothing distribution can be written as

J

p(xo,mlyo:r) o p(zpo.ry)exp | D log [g(ys,la,)] | - )
Jj=1

The estimation of the statistics or marginals of the smoothing distribution is in general intractable
when (1) is non-linear or ¢(y|z) non-Gaussian. One may use sequential Monte Carlo (SMC) sampling
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or particle methods to overcome this difficulty, e.g. [[18 9,7, [12]]. Nevertheless, a major challenge for
sampling from the smoothing distribution is the weight degeneracy of most smoothing procedures.
The consequence is a poor representation of the smoothing distribution and a small ESS, which is
defined as N.;; = N/E[w?], where w are the normalized importance weights [19].

In general, weight degeneracy appears whenever the high-density region of the prior has little overlap
with the likelihood of the data. Hence, only a few of the importance weights are sufficiently dominant
to have a contribution in the estimation of the target statistics. In the case of the smoothing distribution,
this effect increases exponentially with the number of observations [4]]. The problem becomes acuter
whenever the generative model p(z[o, 1) inaccurately approximates the posterior dynamics. For
this reason, much work as been devoted to reducing the weight degeneracy and improve smoothing
estimates, e.g. [13} 25,12, (1,16} 8} 21].

The method proposed here significantly reduces the degeneracy of the particles by adapting the
process with a feedback controller. Hence, the problem of the smoothing estimate translates to a
problem of stochastic optimal control. The relation between filtering of continuous-time hidden
processes and control is not new. In [20]] it was shown that the solution to the Kushner-Stratonovich
equation for the normalized probability density conditioned on noisy measurements is given in terms
of a normalized Feynman-Kac formula similar to the solution of the PI control theory [15]]. More
recently, [25] shows that for a general non-linear non-Gaussian problem, the optimal Kalman gain
can be computed at each time as an Euler-Lagrange boundary value problem. However, this is
restricted to one-dimensional diffusion processes only. In [23] the authors propose an approach that
describes particles whose density evolves according to a Fokker-Planck equation controlled by a
Hamilton-Jacobi-Bellman equation. Unfortunately, it is not recognized that the solution to the optimal
cost-to-go function can be given formally.

Method

In [16] the cross-entropy method [5] is applied to the Path Integral control problem [15]]. This gives a
gradient descent method (PICE) to minimize the KL divergence between the target distribution and
the distribution given by the controlled process

dxy = F(xy, t)dt + ug (x4, t)dt + ogyn (x4, t)dW, 3)
where ug (¢, t) is the feedback controller with an arbitrary parametrization. This method gives an
adaptive importance sampler with particles generated according to (3). At each iteration, starting
with some controller, usually ug(x,t) = 0, we sample ¢ = 1,..., N particles from (3) and compute
their corresponding importance weight w; = exp (—S;) / Z;yzl exp (—95;) defined by the cost of
each particle,

J T
. 1 , . . ,
Sii= = Y tog ot lai,)] + 5 [ ubat el s+ [ul (@ awi
k=1 0

where u' denotes the transposed and dW! is the noise realization of particle i at time s. The
first term comes from the likelihood of the data, the second and third term come from the impor-
tance sampling correction for diffusion processes given by Grisanov’s theorem [11]. The form
of the Grisanov correction can be easily understood by considering the infinitesimal transition
density f(zs1q4t|Ts,u) given the controlled process. This is proportional to the product of the tran-
sition density of the uncontrolled process and the correction term for an infinitesimal time step

f(@spar|zs,u= O)exp(%ug(xs7 s)ug(zs,s)ds +ul (z,, s)dW,).

The normalized weights {wl}i\il in the [ — th iteration are then used to compute the update rule for
the parameters 6; of the feedback control function tg(w,t),

T n
01 =01 +7 </ {aé(xs,s) - (ue(a:s,s) + d;?)} 8ug(%s,S)ds> )
0

00,

where (h(x)), = Zfil w;h(z?) is the weighted average with weights (@) and 7 is a learning rate
[16]. Notice the dependency of \S; on the feedback controller uy(x, t) used to sample the particles.
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Figure 1: Examples of smoothing estimates of the  Figure 2: Comparison of estimates: standard

hidden neuronal activity in the motor cortex (blue: Bootstrap Filter-Smother (black) and PICES esti-

mean; red: standard deviation). Black star: max- mate (blue). The values of the fMRI time-series

imum of the mean estimate; red star: measured are scaled with a factor of 8 for comparison

response time. (green). The CPU time for both methods is about
40 minutes.

A good parametrization of the controller is crucial because better approximations to the optimal
control result in more efficient importance samplers. However, the design of a "good" controller
is a non-trivial task. Thus, we need a flexible parametrization to approximate a complex function
without specifying the concrete features needed for good performance. In this regard, deep neural
networks are a natural candidate. Since PICE places no restriction on the parametric form of u4(x, t),
we choose a deep neural network.

Notice that in |5| we distinguish between the controller used to sample particles ug(zx,t), and the
controller 4;(x, t) that is being updated. The expression provides an unbiased estimate of the gradient
for any choice of ug(z,t), but the variance of the estimate depends on the controller. A particular
choice that we take here is u = 1, i.e. sample particles with the most recently constructed sampler .

The initialization of the particles at time ¢ = 0 requires special care. A priori, the particles are
distributed according to p(x¢), but this distribution changes to the posterior marginal p(zo|yo.7). In
general, it is hard to sample from this distribution. For this purpose, we introduce a Gaussian as
importance sampler at the initial time which is adapted at each iteration using the statistics of the
marginal obtained in the previous iteration [24].

Results

An important example of hidden state estimation from indirect sparse measurements comes from
neuroscience. Non-invasive methods to measure brain activity, e.g. fMRI, are important to understand
cognitive processes in the human brain. However, the measurement of the brain activity through
fMRI is indirect and delayed due to the hemodynamics.

We use PICES to estimate the neuronal activity of a subject during an experiment. In it, visual or
auditory stimuli were presented and the subject had to press a button as soon as the stimulus was
perceived [22]. For the estimations, we consider the motor cortex as the region of interest (ROI)
modeled by a 5-dimensional hidden state where the neuronal activity z follows the one-dimensional
stochastic dynamics,

dz = —zdt + o,dW . (6)

The way in which the neural process affects the BOLD response is modeled in a standard way
involving four coupled nonlinear differential equations, two for the Hemodynamic equations [[10]] and
two for the Balloon model. The observation model is a Gaussian with mean given by a non-linear
function of the states of the Balloon model. This function represents the Bold signal change [3]].
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Figure 3: Effective Sampling Size vs iterations (left) for four fMRI time series: The initial fraction of
ESS is around 3 x 107°, i.e. only one particle out of the N = 3 x 10° has a significant contribution
to the estimations. Right: The mean cost E,, [S] under the control at each iteration.

The objective is to reconstruct the neuronal signal z from the observed Bold signal. Notice that we
disregard any inputs to the ROI (from visual or auditory stimuli) and consider them as unknown.

Each of the 30 stimuli presented to a subject gives an fMRI time series consisting of 41 observations
at an interval of At = 0.399 s. We estimate the hidden neuronal activity by iterating the learning
procedure 45 times. Per learning iteration we use 500 CPUs (or "workers") of the Dutch high-
performance computing platform Cartesius with 600 particles each. As a controller, we use a neural
network with 8 hidden layers and 50 nodes each. All nodes have a rectified linear transfer function.
In figure |l we present four examples of the estimation using PICES. Notice that although no input
is assumed, the estimated neuronal response has a clear peak close to the experimentally measured
response time.

For comparison, we estimate the smoothing distribution over the neuronal activity with a standard
Bootstrap Filter-Smoother (BFS [17]). We use 500 workers with 10* particles per CPU. In each
worker, we estimate the mean and variance of the smoothing distribution. Since the effective sampling
size of the BFS deteriorates for early times, the variance of the estimates at these times is large. For
this reason, the estimations are done using 90 forward passes on each CPU to get better estimates.

Figure 2| compares the estimates from PICES and BFS for one of the 30 fMRI time courses that we
analyzed. The result shows that the BFS has problems estimating a larger amplitude of the neuronal
activity. This is due to the fact that the BFS cannot reconstruct a posterior which significantly deviates
from the prior due to the lack of input in the model. In contrast, the control drift u(z;,t) in PICES
accounts for the lack of inputs in our model.

Finally, in figure [3]left we show how the fraction of the ESS (EffSS) increases several orders of
magnitude, from around 3 x 107° to 0.7 — 0.85. On the right, the mean cost of the particles in each
iteration. The results show how reducing the mean cost S is accompanied by an increase in the ESS
of the particles.

Conclusion

In this paper, we propose a stochastic optimal control method to estimate posterior processes, as an
alternative to particle smoothing. In these problems, it is expected that the prior dynamics give a
poor representation of the posterior process, which explains the poor performance of the Bootstrap
Filter-Smoother. Our results on fMRI show that the adaptive importance sampling using a controlled
diffusion process improves the efficiency of the sampler several orders of magnitude. We can learn
an arbitrary parametrized controller. Here, we used a deep neural network. We found that a shallow
network or a simpler linear feedback controller performed significantly worse in this case (results not
shown).

Both the sampling and gradient computations are easy to parallelize and can be implemented
efficiently in a distributed manner. This is in strong contrast with the standard SMC methods where
the resampling is a bottleneck when considering a distributed implementation and extra considerations
are needed [14].

The proposed method can be applied to a large range of problems where the dynamics of the hidden
state can be described by the general SDE (I). In addition, there is no constraint imposed on the



observation model. Thus, PICES is applicable in many inference problems with different modalities
of data, e.g. spike inference from Ca-Imaging recordings or model based decoding of spike trains.
This makes PICES a promising alternative to the current particle smoothing methods.
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