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Abstract

Online joint parameter and state estimation is a core problem for temporal models.
Most existing methods are either restricted to a particular class of models (e.g., the
Storvik filter) or computationally expensive (e.g., particle MCMC). We propose a
novel nearly-black-box algorithm, the Assumed Parameter Filter (APF), a hybrid
of particle filtering for state variables and assumed density filtering for parameter
variables. It has the following advantages: it is (a) online and computationally effi-
cient; (b) applicable to both discrete and continuous parameter spaces with arbitrary
transition dynamics. On a variety of models, APF generates more accurate results
within a fixed computation budget compared to several standard algorithms.

1 Introduction
Many problems in scientific studies and real-world applications involve modeling of dynamic pro-
cesses, which are often modeled by temporal models, namely state space models (SSMs) [6, 2]. Online
parameter and state estimation –computing the posterior probability for both (static) parameters and
(dynamic) states, incrementally over time– is crucial for many applications [19, 24, 25].

State space models: A state space model (SSM) consists of the parameters Θ ∈ Rp, latent states
{Xt}0≤t≤T ∈ Rd and the observations {Yt}0≤t≤T ∈ Rn defined by

Θ ∼ f1(θ) X0 ∼ f2(x0) Xt | xt−1, θ ∼ g(xt | xt−1, θ) Yt | xt, θ ∼ h(yt | xt, θ)

where fi, g, h denote some arbitrary probability distributions (the model). Given an SSM, the goal of
the joint parameter and state estimation is to compute the posterior distribution of both the states (i.e.,
{Xt}) and the parameters (i.e., Θ) given the observations. In the filtering setting, we aim to compute
the posterior of Θ and Xt for every time t based on evidence until time t, namely p(xt, θ | y0...t).

Existing inference algorithms: The most critical issue for static parameter estimation via the
classical particle filter (PF) is the sample impoverishment problem. Due to the resampling step, which
“kills” the particles with low weights, the diversity of the Θ-particles reduces at every time step.

For joint parameter and state estimation, the “gold standard” approaches are particle Markov chain
Monte Carlo (PMCMC) algorithms [1, 15], which utilize an MCMC transition kernel over the param-
eter space and a classical particle filter for state estimation and likelihood computation. PMCMC
methods are favored due to their theoretical guarantees as an unbiased estimator as well as their
“black-box” property. However, one significant drawback of PMCMC algorithms is the computational
budget. Note that to ensure the MCMC kernel adequately mixes, often an extremely large number
of MCMC iterations is required, especially for real-world applications with a large number of time
steps and complex dynamics. Moreover, the PMCMC algorithms are infeasible for online/streaming
applications since they require multiple sweeps over all the observations. There are also online
algorithms for joint parameter and state estimation problems. However, existing algorithms are either
computationally inefficient [8] or only suitable for a restricted domain of models [27, 17, 7, 16].
∗The first two authors contributed equally to this work.
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2 The Assumed Parameter Filter (APF)

We propose the Assumed Parameter Filter (APF), which is a hybrid of particle filtering for state
variables and assumed density filtering for parameter variables. APF aims to inherit the properties of
the classical particle filter, which is online and applicable to arbitrary transitions, and better overcome
the path degeneracy problem for parameter estimation without an expensive MCMC kernel. In
APF, the posterior of both states and parameters are jointly represented by K particles. On the
contrary to the bootstrap filter which keeps a static parameter value in each particle, APF maintains
an extra approximate distribution and samples from that distribution for the parameter at each time
step. For parameter θkt at time t in particle k, we sample from a distribution qkt (θ) in some parametric
family Q. qkt (θ) is the approximate representation of the true particle posterior p(θ | xk0:t, y0:t). In
order to obtain the approximating distribution qkt from qkt−1, M additional Monte Carlo samples are
utilized for each particle to perform the moment-matching operations required for assumed density
approximation. The proposed method is illustrated in Alg. 1, where the Update function generates
an approximate density q from Q via minimizing the KL-divergence between p(θ | x0:t, y0:t) and q.

Algorithm 1: Assumed Parameter Filter

Input: y0:T , Q, K, and M , the model (f1, f2, g, h) Output: Samples
{
xk0:T , θ

k
T

}K
k=1

Initialize
{
xk0 , q

k
0 (θ)

}K
k=1

according to f1, f2 and Q;
for t = 1, . . . , T do

for k = 1, . . . ,K do
sample θkt ∼ qkt−1(θ) ≈ p(θ | xk0:t−1, y0:t−1), sample xkt ∼ g(xt | xkt−1, θkt ) ;
wkt ← h(yt | xkt , θkt ), qkt (θ)← Update(M,Q; qkt−1(θ), xkt , x

k
t−1, yt);

sample
{

1
N , x̄

k
t , q̄

k
t

}
∼Multinomial

{
wkt , x

k
t , q

k
t

}
,

{
xkt , q

k
t

}
←
{
x̄kt , q̄

k
t

}
;

2.1 Approximating p(θ | x0:t, y0:t)

We are interested in approximately representing p(θ | x0:t, y0:t) in a compact form that belongs to a
distribution family Q. Due to the Markovian structure of the SSM, the posterior can be factorized as

p(θ | x0:t, y0:t) ∝
∏t
i=0 si(θ), si(θ) =

{
p(θ)p(y0 | x0, θ), i = 0

p(xi | xi−1, θ)p(yi | xi, θ), i ≥ 1
.

Let us assume that at time step i − 1 the posterior was approximated by qi−1 ∈ Q. Then with
incorporation of (xi, yi), the posterior p̂ will be p̂(θ | x0:i, y0:i) = si(θ)qi−1(θ)∫

θ
si(θ)qi−1(θ)dθ

. For most models,
p̂ will not belong to Q. We project p̂ into Q via minimizing KL-divergence:

qi(θ) = arg min
q∈Q

D (p̂(θ | x0:i, y0:i) || q(θ)) (1)

For Q in the exponential family, minimizing the KL-divergence reduces to moment matching [26].
For qi(θ) ∝ exp

{
γTi m(θ)

}
, where γi is the canonical parameter and m(θ) is the sufficient statistic,

we compute moments of the one-step ahead posterior p̂ and update γi to match.

g(γi) =

∫
m(θ)qi(θ)dθ =

∫
m(θ)p̂(θ)dθ ∝

∫
m(θ)si(θ)qi−1(θ)dθ

where g(·) is the unique and invertible link function. Thus, for the exponential family, the Update
function computes the moment matching integrals to update the canonical parameters of qi(θ). For the
general case, where these integrals may not be tractable, we propose approximating them by a Monte
Carlo sum with M samples from qi−1(θ): Z ≈ 1

M

∑M
j=1 si(θ

j), g(γi) ≈ 1
MZ

∑M
j=1m(θj)si(θ

j),

where θj ∼ qi−1(θ). In our framework, this approximation is done for all particle paths xk0:i and the
corresponding qki−1, hence leading to O(KM) sampling operations per time step. In practice, a very
small M will be sufficient and the overall overhead can be negligible (more details in Appendix F).

2.2 Asymptotic performance for APF

For simplicity, we only consider continuous parameters and Gaussian as the approximate distribution.
We assume that the model is identifiable (posterior is asymptotically Gaussian around the true
parameter) and only the transition is parametrized by θ while the observation model is known.
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Theorem 1. Let (f1, f2, gθ, hθ) be an identifiable Markovian SSM, and let Q be multivariate Gaus-
sian. The KL divergence between p(θ | x0:t) and the assumed density qt(θ) computed as explained in
the previous subsection will converge to zero as t→∞.

lim
t→∞

DKL (p(θ | x0:t, y0:t)||qt(θ)) = 0. (2)

The proof is in Appendix B. The theorem states that the error due to the projection diminishes
in the long-sequence limit. Therefore, with K,M → ∞, APF would produce samples from the
true posterior distribution p(θ, xt | y0:t). For finite K, however, the method is susceptible to path
degeneracy. Consequences of path degeneracy are further explained in Appendix C.

2.3 Special cases: Gaussians, mixtures of Gaussians and discrete distributions

Gaussian case: For a multivariate Gaussian Q, explicit recursions can be derived for p̂(θ) ∝
si(θ)qi−1(θ) where qi−1(θ) = N (θ;µi−1,Σi−1). The moment matching recursions are

µi = 1
Z

∫
θsi(θ)qi−1(θ)dθ, Σi = 1

Z

∫
θθT si(θ)qi−1(θ)dθ − µiµTi . (3)

where Z =
∫
p̂(θ)dθ =

∫
si(θ)qi−1(θ)dθ. These integrals can be approximated via Monte Carlo

summation as previously described. One alternative is deterministic sampling. Since q is multivariate
Gaussian, Gaussian quadrature rules can be utilized [29, 10]. For an arbitrary polynomial f(x)

of order up to 2M − 1,
∫
f(x)e−x

2

dx can be calculated exactly via Gauss-Hermite quadrature
with M quadrature points. The unscented transform [11] is one specific Gaussian quadrature
rule that uses M = 2d deterministic samples to approximate an integral involving a d-dimensional
multivariate Gaussian. In our case these samples are: ∀1 ≤ j ≤ d, θj = µi−1+

(√
dΣi−1

)
j
, θd+j =

µi−1 −
(√

dΣi−1
)
j
, where (·)j means the jth column of the corresponding matrix. Then, one can

approximately evaluate the moment matching integrals as follows:

Z ≈ 1
2d

∑2d
j=1 si(θ

j), µi ≈ 1
2dZ

∑2d
j=1 θ

jsi(θ
j), Σi ≈ 1

2dZ

∑2d
j=1 θ

j(θj)T si(θ
j)− µiµTi .

Mixtures of Gaussians: Weighted sums of Gaussian probability density functions can be used
to approximate another density function arbitrarily closely. Let us assume that at time step i − 1
it is possible to represent p(θ | x0:i−1, y0:i−1) as a mixture of Gaussians with L components:
p(θ|x0:i−1, y0:i−1) =

∑L
m=1 α

m
i−1N (θ;µmi−1,Σ

m
i−1) = qi−1(θ). Given xi and yi,

p̂(θ | x0:i, y0:i) ∝
L∑

m=1

αmi−1si(θ)N (θ;µmi−1,Σ
m
i−1).

p̂ will not be a Gaussian mixture for arbitrary si. We project p̂ back into the Gaussian mixture
family and the approximated density is qi(θ) =

∑L
m=1 α

m
i N (θ;µmi ,Σ

m
i ) (details in Appendix D).

µmi = 1
βm

∫
θsi(θ)N (θ;µmi−1,Σ

m
i−1)dθ, Σmi = 1

βm

∫
θθT si(θ)N (θ;µmi−1,Σ

m
i−1)dθ − µmi (µmi )T

where βm =
∫
si(θ)N (θ;µmi−1,Σ

m
i−1)dθ and αmi =

αmi−1β
m∑

` α
`
i−1β

` . Either a Monte Carlo sum or a
Gaussian quadrature rule can be utilized to approximately update the means and covariances.

Discrete parameter spaces: Let us consider a d-dimensional parameter space where each parameter
can take at mostNθ values. One can always track p(θ | x0:t, y0:t) exactly with a constant-time update;
the constant, however, is exponential in d [3], which is computationally intractable with increasing
dimensionality. We propose projection onto a fully factorized distribution, i.e., qi(θ) =

∏
j qj,i(θj).

For this choice, minimizing the KL-divergence reduces to matching marginals:

Z =
∑
θ si(θ)qi−1(θ), qj,i(θj) = 1

Z

∑
θ\θj si(θ)qi−1(θ).

Computing these summations is intractable. We propose using Monte Carlo summation.

3 Experiments

We experimented on three models: 1. SIN: a nonlinear dynamical model with 1 continuous parameter;
2. SLAM: a simultaneous localization and Bayesian map learning problem with 20 discrete parameters;
3. BIRD: a 4-parameter model to track migrating birds with real-world data. We compare the
estimation accuracy of APF, as a function of run time, against Liu-West filter (LW) and PMCMC
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Figure 1: (a) accuracy on SIN; (b) histograms of samples for θ in the multimodal SIN by APF
(L = 2, 5, 10 mixtures of Gaussians) and the almost-true posterior by PMMH; (c) accuracy on SLAM.

algorithms: particle marginal Metropolis-Hastings (PMMH), particle Gibbs (PGibbs) and particle
Gibbs with ancestor sampling (PGAS). Due to space limit, results on BIRD are in Appendix E.

Due to the black-box property of APF, we developed APF in a probabilistic programming system,
the State and Parameter Estimate Compiler (SPEC), utilizing some techniques from probabilistic pro-
gramming community (details in Appendix G). SPEC also supports LW. PMMH is manually adapted
from the code by SPEC. Code for PGibbs and PGAS are generated by the Anglican compiler [28].

3.1 Toy nonlinear model (SIN)

We consider the SIN model: Xt ∼ N (sin(θxt−1), 1), Yt ∼ N (xt, 0.5
2),Θ ∼ N (0, 1), X0 ∼

N (0, 1) with the true parameter θ? = 0.5. 5000 data points are generated to ensure a sharp posterior.

We evaluate the mean squared error over 10 trials between the estimation results and θ? within a fixed
amount of time. For APF and LW, we consider the mean of the samples for Θ at the last time step For
PMCMC, we take the average of the last half of the samples and leave the first half as burn-in. For
APF, we choose Gaussian as the approximate distribution with M = 7. For PMCMC, we use a local
truncated Gaussian as the proposal distribution. The results are shown in Fig. 1(a). APF produced a
result of orders of magnitude smaller error within a much smaller amount of run time: an estimation
for θ with 1.6 ∗ 10−4 square error with only 1000 particles in 1.5 seconds.

Bimodal Variant: Consider a multimodal variant of SIN: Xt ∼ N (sin(θ2xt−1), 1), Yt ∼
N (xt, 0.5

2). Due to the θ2 term, p(θ | y0:t) will be bimodal. We generate 200 data points and
execute APF with K = 103 particles and M = 7 using mixtures of L = 2, 5, 10 Gaussians as
the approximate distribution. To illustrate the true posterior, we ran PMMH with K = 500 for 20
minutes (much longer than APF) to ensure it mixes properly. The histograms of the samples for θ are
in Fig. 1(b). APF successfully approximates the multimodal posterior when L = 5, 10 but fails for
L = 2. This suggests that increasing the number of mixtures used for approximation can help find
different modes in the true posterior in practice.

3.2 Simultaneous localization and mapping (SLAM)

We consider a simultaneous localization and mapping example (SLAM) modified from [20]. The map
is defined as a 1-dimensional grid world with NL cells, where each cell has a static label (boolean
parameter) which will be (noisily) observed by the robot. Neither the map nor the robot’s location is
observed. Given the action, move right or left, the robot moves in the direction with a probability of
pa and stays with a probability of 1− pa (i.e., robot’s wheels slip). The robot observes the label of
its current cell correctly with probability po. The original example has NL = 8 cells and 16 actions.
Here, we make the problem more difficult by setting NL = 20 and deriving a sequence of 41 actions
to ensure a sharp posterior.

We evaluate the KL-divergence between the prediction posterior and the true posterior within various
time limits. In APF, we use a Bernoulli distribution as the approximate distribution for each cell. For
PMMH, we use a coordinate MCMC kernel: we only sample a single grid at each MCMC iteration.

Fig. 1(c) shows that APF approximates the posterior distribution much more accurately than other
methods within a shorter run time.
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Appendix

A Bootstrap particle filter as a subcase of APF

Here we will show that when q is a delta function, APF recovers the bootstrap particle filter. The
Dirac delta function can be considered as the limit of a Gaussian as the variance goes to zero,
δ(θ − µ) = limσ2→0N (θ;µ, σ2). Therefore, we can view q as an exponential family distribution.
Specifically we are dealing with a Gaussian distribution with unknown mean and known variance
(zero-variance). Then the moment matching integral required for assumed density filtering reduces to
matching the means. If qi−1 = δ(θ − µi−1), then

µi =

∫
θqi(θ)dθ =

∫
θp̂(θ)dθ

=

∫
θsi(θ)δ(θ − µi−1)dθ∫
si(θ)δ(θ − µi−1)dθ

=
µi−1si(µi−1)

si(µi−1)
= µi−1 (4)

where the last equality follows from the sifting property of the Dirac delta function. The main result
here is that for Q Dirac delta, µi = µi−1; that is, the APF Update step does not propose new values.
Therefore, our proposed algorithm recovers the standard bootstrap particle filter.

B Proof for Theorem 1

In this section2 we will assume an identifiable model where the posterior distribution approaches
normality and concentrates in the neighborhood of the posterior mode. Suppose θ̂ is the posterior
mode and hence the first-order partial derivatives of log p(θ | x0:T , y0:T ) vanish at θ̂. Define

Î = −∂
2 log p(θ | x0:T , y0:T )

∂θ∂θT

∣∣∣∣
θ=θ̂

(5)

Applying a second-order Taylor approximation around θ̂ to the posterior density results in

log p(θ | x0:T , y0:T ) ≈ log p(θ̂ | x0:T )− 1

2
(θ − θ̂)T Î(θ − θ̂)

Hence;

p(θ | x0:T , y0:T ) ∝ exp

{
−1

2
(θ − θ̂)T Î(θ − θ̂)

}
(6)

which is a p (θ ∈ Rp) dimensional Gaussian density with mean θ̂ and covariance Î−1. As the
posterior becomes highly concentrated in a neighborhood of the posterior mode, the effect of the prior
on the posterior diminishes, which is the Bernstein-von Mises theorem. Then we can rewrite Eq. 6 as

p(θ | x0:T , y0:T ) ∝ exp

−T2 ∑
ij

(θi − θ̂i)Ĵij(θj − θ̂j)


where Ĵij = −∂i∂j 1

T

∑T
t=1 log st(θ̂) and st(θ) = p(xt | xt−1, θ)p(yt | xt, θ).

The assumed density filter updates for the Gaussian case has been derived in earlier sections. We will
reorganize them in a more convenient form.

µi(t) =

∫
θist(θ)qt−1(θ)dθ∫
st(θ)qt−1(θ)dθ

Σij(t) =

∫
θiθjst(θ)qt−1(θ)dθ∫
st(θ)qt−1(θ)dθ

− µi(t)µj(t)

2Our discussion follows [22] which considers the asymptotic performance of assumed density filtering for
independent identically distributed data.
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We will use a simple property of centered Gaussian random variables z, E[zf(z)] = E(f
′
(z)).E(z2)

which can be proven by applying integration by parts. Then the explicit updates can be written as
follows:

µi(t) = µi(t− 1) +
∑
j

Σij(t− 1)× ∂j logEu[st(µ(t− 1) + u)]

Σij(t) = Σij(t− 1) +
∑
kl

Σik(t− 1)Σlj(t− 1)∂k∂l logEu[st(µ(t− 1) + u)] (7)

where u is a zero-mean Gaussian random vector with covariance Σ(t − 1). We define Vkl =
∂k∂l logEu[st(θ + u)] and assume that for large times we can replace the difference equation for
Σ(t) with a differential equation. Then we can rewrite Eq. 7 as

dΣ

dt
= ΣV Σ (8)

which is solved by
dΣ−1

dt
= −V (9)

Integrating both sides

Σ−1(t)− Σ−1(t0) = −
∫ t

t0

V (τ)dτ (10)

For large t ; we expect the covariance Σ to be small such that logEu[st(µ + u)] = log st(µ).
Assuming that the online dynamics is close to θ∗ and dividing both sides of Eq. 10 by t and taking
the limit t→∞, we get

lim
t→∞

(Σ−1(t))ij
t

= lim
t→∞

−
∫ t
t0
∂i∂js(θ

∗)

t
(11)

Further assuming ergodicity (i.e., markov process converging to some stationary distribution π), we
can replace the time average with the probabilistic average.

lim
t→∞

(Σ−1(t))ij
t

= −
∫
π(x)p(x′ | x, θ∗)∂i∂j log s(θ∗)dxdx′

If we define the right hand side as Aij = −
∫
π(x)p(x′ | x, θ∗)∂i∂j log p(x′ | x, θ∗)p(y |

x′, θ∗)dxdx′ we have;

lim
t→∞

Σ(t) =
A−1

t
(12)

We will also analyze the asymptotic scaling of the estimation error, defined as the deviation between
θ∗ and µ(t). Assuming that the estimate µ is close to θ∗ and the posterior is sharply concentrated we
can neglect the expectation with respect to u in Eq.7. Defining µi(t) = θ∗i + εi(t), and applying a
first order Taylor approximation to Eq. 7 around θ∗ we get;

εi(t+ 1)− εi(t) =
∑
`

Σi`∂` logP +
∑
k`

Σi`εk(t)∂k∂l logP

where P ≡ p(x′ | x, θ∗)p(y | x′, θ∗). Taking the expectation with respect to the stationary
distribution (denoted by an overbar) and using the relationship in Eq. 12 and replacing the difference
equation with a differential equation we get an equation of motion for the expected error ei = ε̄i.

dei
dt

+
ei
t

=
∑
j

(A−1)ij
t

∂j logP (13)

As t→∞ right hand side vanishes and hence the error term decays like ei ∝ 1
t .

Revisiting Eq. 6, the true posterior covariance matrix is given by C−1 = T Ĵ . Due to our ergodicity
assumption, limt Ĵ = A. Hence the true posterior density covariance asymptotically converges to
A−1/T which is the same limit as the assumed density filter covariance Σ(t).
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KL divergence between two d-dimensional multivariate Gaussians, N (µ1,Σ1) and N (µ2,Σ2) is
given by

1

2

[
log
|Σ2|
|Σ1|

− d+ tr(Σ−12 Σ1) + (µ2 − µ1)TΣ−12 (µ2 − µ1)

]
We have shown that limt→∞ C,Σ = A−1/t and µ(t)→ θ∗. Due to the identifiability assumption,
the posterior mode is also assumed to converge to the parameter θ∗. Applying these findings to the
earlier KL-divergence formula, we can see that;

lim
t→∞

DKL(p(θ | x0:t, y0:t)||qt(θ)) = 0. (14)

For the SIN model discussed in the experiments section, the true posterior p(θ | x0:t) is computed for
a grid of parameter values in O(t) time per parameter value. Assumed density filtering is also applied
with Q Gaussian and the true density (solid) vs. assumed density (dashed) is illustrated in Fig. 2.
Notice that, ADF is slightly off at earlier stages, however, does indeed catch up with the ground truth
with more data.
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t=1000

Figure 2: True posterior p(θ | x0:t) vs assumed density filter estimate qt(θ) (solid vs dashed line
respectively). for the SIN model.

As predicted by Eq. 13, the error term converges to zero as shown in Fig. 3(a). Figure 3(b) illustrates
the asymptotic behavior of the true posterior covariance C(t) and assumed density covariance Σ(t).
Assumed density filter quickly approximates the covariance. Most importantly, as can be seen
from the plot, logC(t) and log Σ(t) is log(1/t) + constant asymptotically, and this agrees with our
derivations in Eq. 12. Figure 3(c) confirms our theoretical result of KL divergence converging to zero
in the long-sequence limit.
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Figure 3: SIN model with θ∗ = 0.5

C Path degeneracy

Similar to [27, 17], we are sampling from p(θ | xi0:t, y0:t) at each time step to fight against sample im-
poverishment. It has been discussed before that these methods suffer from ancestral path degeneracy
[4, 17, 23]. For any number of particles and for a large enough n, there exists some m < n such that
p(x0:m | y0:n) is represented by a single unique particle. For dynamic models with long memory, this
will lead to a poor approximation of sufficient statistics, which in turn will affect the posterior of the
parameters. In [23], it has been shown that even under favorable mixing assumptions, the variance of
an additive path functional computed via a particle approximation grows quadratically with time. To
fight against path degeneracy, one may have to resort to fixed-lag smoothing or smoothing. Olsson et
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al. used fixed-lag smoothing to control the variance of the estimates [21]. Del Moral et al. proposed
an O(K2) per time step forward smoothing algorithm which leads to variances growing linearly with
t instead of quadratically [5]. Poyiadjis et al. similarly proposed an O(K2) algorithm that leads to
linearly growing variances [23]. These techniques can easily be augmented into the APF framework
to overcome the path degeneracy problem for models with long memory.

D Mixture of Gaussians Derivation

Let us assume that at time step i− 1 it was possible to represent p(θ | x0:i−1, y0:i−1) as a mixture of
Gaussians with L components.

p(θ | x0:i−1, y0:i−1) =

L∑
m=1

αmi−1N (θ;µmi−1,Σ
m
i−1)

= qi−1(θ)

Given xi and yi;

p̂(θ | x0:i, y0:i) ∝
L∑

m=1

αmi−1si(θ)N (θ;µmi−1,Σ
m
i−1)

The above form will not be a Gaussian mixture for arbitrary si. We can rewrite it as:

p̂ ∝
L∑

m=1

αmi−1β
m si(θ)N (θ;µmi−1,Σ

m
i−1)

βm
(15)

where the fraction is to be approximated by a Gaussian via moment matching and the weights are to
be normalized. Here, each βm =

∫
si(θ)N (θ;µmi−1,Σ

m
i−1)dθ describes how well the m-th mixture

component explains the new data. That is, a mixture component that explains the new data well will
get up-weighted and vice versa. It is important to note that the proposed approximation is not exactly
an ADF update. The problem of finding a mixture of fixed number of components to minimize the
KL divergence to a target distribution is intractable [9]. The proposed update here is the one that
matches the mean and covariance.

The resulting approximated density would be qi(θ) =
∑K
m=1 α

m
i N (θ;µmi ,Σ

m
i ) where the recursion

for updating each term is as follows:

βm =

∫
si(θ)N (θ;µmi−1,Σ

m
i−1)dθ

αmi =
αmi−1β

m∑
` α

`
i−1β

`

µmi =
1

βm

∫
θsi(θ)N (θ;µmi−1,Σ

m
i−1)dθ

Σmi =
1

βm

∫
θθT si(θ)N (θ;µmi−1,Σ

m
i−1)dθ − µmi (µmi )T

Similar to the Gaussian case, the above integrals are generally intractable. Either a Monte Carlo sum
or a Gaussian quadrature rule can be utilized to approximately update the means and covariances.

E Experiments on the BIRD model

The bird migration problem (BIRD) is originally investigated in [6], which proposes a hidden Markov
model to infer bird migration paths from a large database of observations.

In the BIRD model, there are 4 continuous parameters with 60 dynamic states where each time step
contains 100 observed variables and more than 104 hidden variables.

We again measure the mean squared estimation error over 10 trials between the average of the samples
for the parameters and the ground truth within different time limits. For APF, we use a diagonal
Gaussian approximation with M = 15. For PMMH we use a truncated Gaussian proposal with
diagonal covariance and leave the first half of the samples as burn-in. We did not compare against
PGAS and PGibbs since these algorithms require storing the full history, which consumes too much
memory (60x larger) to run enough particles. The results illustrated in Fig. 4 again show that APF
achieves much better convergence within a much tighter computational budget.
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Figure 4: Estimation accuracy of APF against Liu-West filter and PMMH on the BIRD model.

F Practical Performances of APF

The time complexity of APF is O(MKT ) over T time steps for K particles with M extra samples to
update the sufficient statistics through the moment matching integrals. Setting K and M adequately
is crucial for performance. SmallK prevents APF exploring the state space sufficiently whereas small
M leads to inaccurate sufficient statistics updates which will in turn result in inaccurate parameter
estimation.

Note that the typical complexity of PMCMC algorithms is O(NKT ) where N denotes the number
of MCMC samples. Although in the same order of APF for time complexity, we find in practice
that M is often orders of magnitude smaller than N for achieving a given level of accuracy: in our
experiments, M = 7 with Gaussian quadrature rules is sufficient for continuous parameters while
M = 100 is sufficient for discrete case.

Moreover, the actual running time for APF is often much smaller than its theoretical upper bound
O(MKT ). Notice that the approximation computation in APF only requires the local data in a
single particle and does not influence the weight of that particle. Hence, one important optimization
specialized for APF is to resample all the particles prior to the update step and only update the
approximate distribution for those particles that do not disappear after resampling. It is often the case
that a small fraction of particles have significantly large weights. Consequently, in our experiment,
the actual running time of APF is several times faster than the theoretically required time O(MKT ).

For M = 7 in SIN, in theory APF should be 7 times slower than the plain particle filter. But in
practice, since we resample all the particles prior to the update step and only update the approximate
distribution for those particles that do not disappear, APF is just 2 times slower. Similarly, in SLAM,
APF requires 20M = 2000 extra samples per time step than plain particle filter, which implies that
theoretically APF should be 2000x slower. However, due to the resampling trick, APF is merely 60x
slower in practice. Likewise,

Lastly, the space complexity for APF is in the same order as the bootstrap particle filter, namely
O(K). Overall, APF is constant time and memory per update and hence fits into online/streaming
applications.

G Using APF within a probabilistic programming system

This section shows APF can be integrated into a probabilistic programming language (PPL),
BLOG [18], from which the general research community can benefit. PPLs aim to allow users
to express an arbitrary Bayesian model via a probabilistic program while the backend engine of PPL
automatically performs black-box inference over the model. PPLs largely simplify the development
process of AI applications involving rich domain knowledge and have led to many successes, such as
the human-level concept learning [13] and the 3D scene perception [12].

We developed a compiled inference engine, the State and Parameter Estimation Compiler (SPEC),
utilizing APF under BLOG [18] thanks to its concise syntax [14]: in the BLOG language, state
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variables are those indexed by timestep, while all other variables are effectively parameters; thus, by
identifying the static and dynamic variables, the SPEC compiler can automatically work out how to
apply APF to the filtering problem.

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

 

// parameter 
random Real theta ~ Gaussian(0,1);  
// state X(t) 
random Real X(Timestep t) ~   
// initial value, X(0) 

  if t == @0 then Gaussian(0, 1)  
// transition 

  else Gaussian(sin(theta * X(t - @1)), 1);  
// observed variable Y(t) 
random Real Y(Timestep t)~Gaussian(X(t),0.25); 
// user declared C++ function 
extern Real loadData(Timestep t); 
// observations 
obs Y(t) = loadData(t) for Timestep t; 
// query states and the parameter 
query X(t) for Timestep t;  
query theta; 
 

 The BLOG program above describes the SIN model: Xt ∼ N (sin(θxt−1), 1), Yt ∼
N (xt, 0.5

2),Θ ∼ N (0, 1), X0 ∼ N (0, 1).

The keyword random declares random variables in the model: those with an argument of type
Timestep are states (dynamic variables, i.e., X(t) and Y(t)) while others are parameters (static
variables, i.e., theta). Line 14 states that Y(t) is observed while line 16 and 17 query the posterior
distribution of the state X(t) at each time step and the parameter theta. We also extend the original
syntax of BLOG by introducing a new keyword extern (Line 12) to import arbitrary customized
C++ functions (e.g., input functions for streaming data at each time step).

A user can utilize SPEC to perform inference with APF for both {Xt} and Θ by simply coding
this tiny program without knowing algorithm details. SPEC automatically analyzes the parameters,
selects approximate distributions and applies APF to this model. By default, we use Gaussian
distributions with Gauss-Hermite quadratures for continuous parameters and factored categorical
distributions for discrete parameters. SPEC is extensible for more approximate distributions for further
development. Due to the memory efficiency of APF, many optimizations from the programming
language community can be applied to even accelerate the practical performance of APF.
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