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Abstract

We study parameter inference in large-scale latent variable models. We first pro-
pose a unified treatment of online inference for latent variable models from a
non-canonical exponential family, and draw explicit links between several previ-
ously proposed frequentist or Bayesian methods. We then propose a novel inference
method for the frequentist estimation of parameters, that adapts MCMC methods
to online inference of latent variable models with the proper use of local Gibbs
sampling. Then, for latent Dirichlet allocation,we provide an extensive set of exper-
iments and comparisons with existing work, where our new approach outperforms
all previously proposed methods. This work is currently under review for JMLR [1]
(submitted on July, 27 2016).

1 Introduction

Probabilistic graphical models provide general modelling tools for complex data, where it is natural
to include assumptions on the data generating process by adding latent variables in the model. Such
latent variable models are adapted to a wide variety of unsupervised learning tasks [2, 3]. In this
paper, we focus on parameter inference in such latent variable models where the main operation
needed for the standard expectation-maximization (EM) algorithm is intractable, namely dealing with
conditional distributions over latent variables given the observed variables; latent Dirichlet allocation
(LDA) [4] is our motivating example, but many hierarchical models exhibit this behavior, e.g., ICA
with heavy-tailed priors. For such models, there exist two main classes of methods to deal efficiently
with intractable exact inference in large-scale situations: sampling methods or variational methods.

Sampling methods can handle arbitrary distributions and lead to simple inference algorithms while
converging to exact inference. However it may be slow to converge and non scalable to big datasets
in practice. In particular, although efficient implementations have been developed, for example for
LDA [5, 6], MCMC methods may not deal efficiently yet with continuous streams of data for our
general class of models.

On the other hand, variational inference builds an approximate model for the posterior distribution
over latent variables—called variational—and infer parameters of the true model through this approx-
imation. The fitting of this variational distribution is formulated as an optimization problem where
efficient (deterministic) iterative techniques such as gradient or coordinate ascent methods apply. This
approach leads to scalable inference schemes [7], but due to approximations, there always remains a
gap between the variational posterior and the true posterior distribution, inherent to algorithm design,
and that will not vanish when the number of samples and the number of iterations increase.

Beyond the choice of approximate inference techniques for latent variables, parameter inference
may be treated either from the frequentist point of view, e.g., using maximum likelihood inference,
or a Bayesian point of view, where the posterior distribution of the parameter given the observed
data is approximated. With massive numbers of observations, this posterior distribution is typically
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peaked around the maximum likelihood estimate, and the two inference frameworks should not differ
much [8].

In this paper, we focus on methods that make a single pass over the data to estimate parameters. We
make the following contributions: (1) We review and compare existing methods for online inference
for latent variable models from a non-canonical exponential family and draw explicit links between
several previously proposed frequentist or Bayesian methods; (2) We propose a novel inference
method for the frequentist estimation of parameters, that adapts MCMC methods to online inference
of latent variable models with the proper use of “local” Gibbs sampling; (3) We provide an extensive
set of experiments for LDA, where our new approach outperforms all previously proposed methods.

2 Online EM

We consider an exponential family model on random variables (X,h) with parameter η ∈ E ⊆ Rd
and with density [9]:

p(X,h|η) = a(X,h) exp
[
〈φ(η), S(X,h)〉 − ψ(η)

]
. (1)

We assume that h is hidden andX is observed. The vector φ(η) ∈ Rd represents the natural parameter,
S(X,h) ∈ Rd is the vector of sufficient statistics, ψ(η) is the log-normalizer, and a(X,h) is the
underlying base measure. We consider a non-canonical family as in many models (such as LDA), the
natural parameter φ(η) does not coincide with the model parameter η, that is, φ(η) 6≡ η; we however
assume that φ is injective.

We consider N i.i.d. observations (Xi)i=1,...,N from a distribution t(X), which may be of the form
P (X|η∗) =

∫
h
p(X,h|η∗)dh for our model above and a certain η∗ ∈ E (well-specified model) or

not (misspecified model). Our goal is to obtain a predictive density r(X) built from the data and
using the model defined in (1), with the maximal expected log-likelihood Et(X) log r(X).

Maximum likelihood estimation. In the frequentist perpective, the predictive distribution r(X)
is of the form p(X|η̂), for a well-defined estimator η̂ ∈ E. The most common method is the EM
algorithm [10], which aims at maximizing the likelihood of the observed data, that is,

max
η∈E

∑N
i=1 log p(Xi|η). (2)

More precisely, the EM algorithm is an iterative process to find the maximum likelihood (ML)
estimate given observations (Xi)i=1,...,N associated to hidden variables (hi)i=1,...,N . It may be seen
as the iterative construction of lower bounds of the log-likelihood function [11]. In the exponential
family setting (1), we have, by Jensen’s inequality, given the model defined by η′ ∈ E from the
previous iteration, and for any parameter η ∈ E:

log p(Xi|η) ≥ 〈φ(η),Ep(hi|Xi,η′) [S(Xi, hi)]〉 − ψ(η)− Ci(η′),

for a certain constant Ci(η′), with equality if η′ = η. Thus, EM-type algorithms build locally tight
lower bounds of the log-likelihood in (2), which are equal to 〈φ(η),

∑N
i=1 si〉 −Nψ(η) + cst, for

appropriate values of si ∈ Rd obtained by computing conditional expectations with the distribution
of hi given Xi for the current model defined by η′ (E-step), i.e., si = Ep(hi|Xi,η′) [S(Xi, hi)]. Then
this function of η is maximized to obtain the next iterate (M-step). In standard EM applications, these
two steps are assumed tractable. In Section 3, we will only assume that the M-step is tractable while
the E-step is intractable.

Standard EM will consider si = Ep(hi|Xi,η′) [S(Xi, h)] for the previous value of the parameter η
for all i, and hence, at every iteration, all observations Xi, i = 1, . . . , N are considered for latent
variable inference, leading to a slow “batch” algorithm for large N .

Stochastic approximation. Given our frequentist objective Et(X) log p(X|η) to maximize de-
fined as an expectation, we may consider two forms of stochastic approximation [12], where ob-
servations Xi sampled from t(X) are processed only once. The first one is stochastic gradient
ascent, of the form ηi = ηi + γi

∂ log p(Xi|η)
∂η , or appropriately renormalized version thereof, i.e.,

ηi = ηi + γiH
−1 ∂ log p(Xi|η)

∂η , with several possibilities for the d× d matrix H , such as the negative
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Hessian of the partial or the full log-likelihood, or the negative covariance matrix of gradients, which
can be seen as versions of natural gradient—see [13, 14, 15]. This either leads to slow convergence
(without H) or expensive iterations (with H), with the added difficulty of choosing a proper scale
and decay for the step-size γi.

A key insight from [14, 15] is to use a different formulation of stochastic approximation, not
explicitly based on stochastic gradient ascent. Indeed, they consider the stationary equation
Et(X)

[∂ log p(X|η)
∂η

]
= 0 and expand it using the exponential family model (1), which leads to

[see 1, 15, for details]:

Et(X)

[
Ep(h|X,η) [S(X,h)]

]
= Ep(h,X|η) [S(X,h)] .

This stationary equation states that at optimality the sufficient statitics have the same expectation for
the full model p(h,X|η) and the joint “model/data” distribution t(X)p(h|X, η).

Another important insight of [14, 15] is to consider the change of variable on sufficient statistics
s(η) = Ep(h,X|η) [S(X,h)], which is equivalent to η = η∗(s) ∈ arg max 〈φ(η), s〉 − ψ(η), (which
is the usual M-step update). See [15] for detailed assumptions allowing this inversion. We may then
rewrite the equation above as

Et(X)

(
Ep(h|X,η∗(s)) [S(X,h)]

)
= s.

This is a non-linear equation in s ∈ Rd, with an expectation with respect to t(X) which is only
accessed through i.i.d. samples Xi, and thus a good candidate for the Robbins-Monro algorithm to
solve stationary equations (and not to minimize functions) [12], which takes the simple form:

si = si−1 − γi
(
si−1 − Ep(hi|Xi,η∗(si−1)) [S(Xi, hi)]

)
,

with a step-size γi. It may be rewritten as{
si = (1− γi)si−1 + γiEp(hi|Xi,ηi−1)[S(Xi, hi)]
ηi = η∗(si),

(3)

which has a particularly simple interpretation: instead of computing the expectation for all obser-
vations as in full EM, this stochastic version keeps tracks of old sufficient statistics through the
variable si−1 which is updated towards the current value Ep(hi|Xi,ηi−1)[S(Xi, hi)]. The parameter η
is then updated to the value η∗(si). [15] shows that this update is asymptotically equivalent to the
natural gradient update with three main improvements: (a) no matrix inversion is needed, (b) the
algorithm may be accelerated through Polyak-Ruppert averaging [16], i.e., using the average η̄N of
all ηi instead of the last iterate ηN , and (c) the step-size is particularly simple to set, as we are taking
convex combinations of sufficient statistics, and hence only the decay rate of γi has to be chosen, i.e.,
of the form γi = i−κ, for κ ∈ (0, 1], without any multiplicative constant.

For the stepsize γi = 1/i, online EM (3) corresponds exactly to the incremental EM presented
above [17].

3 Online EM with intractable models

The online EM updates in (3) lead to a scalable algorithm for optimization when the local E-step is
tractable. However, in many latent variable models—e.g., LDA, hierarchical Dirichlet processes [19],
or ICA [20]—it is intractable to compute the conditional expectation Ep(h|X,η)[S(X,h)].

Following [21], we propose to leverage the scalability of online EM updates (3) and locally approxi-
mate the conditional distribution p(h|X, η) in the case this distribution is intractable to compute.

Sampling methods: G-OEM. MCMC methods to approximate the conditional distribution of latent
variables with online EM have been considered by [21], who apply locally the Metropolis-Hasting
(M-H) algorithm [22, 23], and show results on simple synthetic datasets. While Gibbs sampling is
widely used for many models such as LDA due to its simplicity and lack of external parameters, M-H
requires a proper proposal distribution with frequent acceptance and fast mixing, which may be hard
to find in high dimensions. We provide a different simpler local scheme based on Gibbs sampling
(thus adapted to a wide variety of models), and propose a thorough favorable comparison on synthetic
and real datasets with existing methods.
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(b) New York Times

Figure 1: Perplexity on 11 different test sets as a function of K, the number of topics inferred.

The Gibbs sampler is used to estimate posterior distributions by alternatively sampling parts of
the variables given the other ones [see 24, for details], and is standard and easy to use in many
common latent variable models. In the following, the online EM method with Gibbs estimation of
the conditional distribution p(h|X, η) is denoted G-OEM.

As mentioned above, the online EM updates correspond to a stochastic approximation algorithm and
thus are robust to random noise in the local E-step. As a result, our sampling method is particularly
adapted as it is a random estimate of the E-step—see a theoretical analysis by [21], and thus we only
need to compute a few Gibbs samples for the estimation of p(h|Xi, ηi−1). A key contribution of
our paper is to reuse sampling techniques that have proved competitive in the batch set-up and to
compare them to existing variational approaches.

“Boosted” inference. As the variational and MCMC estimations of p(h|Xi, ηi−1) are done with
iterative methods, we can boost the inference of the proposed algorithm by applying the update in the
parameter η in (3) after each iteration of the estimation of p(h|Xi, ηi−1). In the context of LDA, this
was proposed by [25] for incremental EM and we extend it to all versions of online EM. With this
boost, we expect that the global parameters η converge faster, as they are updated more often. We
empirically show that this boost only leads to significantly better results for variational method [see 1,
for details].

4 Experiments for LDA model

We derive our algorithm for the particular model of LDA [4] [see 1, for complete derivation]. We
evaluate our method by computing the likelihood on held-out documents, that is p(X|η) for any test
document X . For LDA, the likelihood is intractable to compute. We approximate p(X|η) with the
“left-to-right” evaluation algorithm [26] applied to each test document. In the following, we present
results in terms of log-perplexity, defined as the opposite of the log-likelihood − log p(X|η). The
lower the log-perplexity, the better the corresponding model. In our experiments, we compute the
average test log-perplexity over test documents.

We compare seven different methods: G-OEM (our main algorithm): Gibbs online EM with step-size
γi = 1/

√
i; OLDA: online LDA [27]; VarGibbs: Sparse stochastic inference for LDA [28]; SPLDA:

single pass LDA [25]; SGS: streaming Gibbs sampling [29]; LDS: Stochastic gradient Riemannian
Langevin dynamics sampler [30].

Results for IMDB (600,000 reviews from [31]) and New York Times (300,000 documents from UCI
dataset [32]) are presented in Figure 1 [see 1, for further experiments].

All methods for the same problem are similar (in fact a few characters away from each other); ours is
based on a proper stochastic approximation maximum likelihood framework, is empirically the most
robust as it performs better for all experiments.
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