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Abstract

We propose a novel approach to binary and ordinal prediction with structured
uncertainty in the input variables. It is based on efficiently approximating the
prediction model conditional on the inputs and then marginalizing the conditional
model over the input space using Monte Carlo approximation. For efficiency, the
well-known Laplace approximation is used for the binary case and we derive a
similar approximation for the ordinal case. Empirical evaluation on sports data
shows that the proposed approach substantially improves forecasting accuracy
and highlights the severity of the problem of uncertainty in the input variables in
sports.

1 Introduction

This work is motivated by a problem in sports forecasting [6] – predicting future outcomes from
past performances. To illustrate the problem, imagine we are interested in predicting the outcome
of a basketball game between two teams. Typically, we would first compile a set of past games
with outcomes and relevant performance-related variables, which are usually count variables, such
as shots made/missed, rebounds, etc. Then we aggregate these variables across past performances
and possibly transform them into variables that are known to be good descriptors of team quality
and predictors of future performance, e.g. shooting percentage. Finally, we would use some binary
regression model to model the relationship between the inputs and the outcomes. What has so far
not been taken into account in related work is that past performance variables are noisy and that the
noise is transferred to any input variables we derive from them. Fitting a model and failing to account
for this uncertainty will result in being overconfident in the model parameters. Thus, forecasting
accuracy could be improved by first modeling the uncertainty in the inputs and second taking this
uncertainty into account in the model, and we focus on developing a Bayesian approach for the
second task, while addressing the first in a limited case with prior information.

2 Methods

Let X ∈ Rn×m, be our training data and y ∈ Rn the target variable. We train a model that can
produce predictions y∗ for a given new x∗ by using the training data X . We adopt the Bayesian
approach p(β|X, y) ∝ p(X, y, |β)p(β), where β are the parameters of the model. For the prediction
setting, we obtain the probability by marginalizing over the model parameters: p(y∗|x∗, X, y) =∫
p(y∗|β, x∗)p(β|X, y)dβ, where the data are treated as constant. A more general problem arises in
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our setting, where we instead treat the inputs X and x∗ as random variables, with densities p(X|w)
and p(x∗|w∗), where w and w∗ are known. In this case, to train a model and obtain its posterior
distribution p(β|w, y) we must marginalize over the input space of possible training data sets X:

p(β|w, y) =

∫
p(β,X|w, y)dX =

∫
p(β|X, y)p(X|w)dX.

Similarly, to obtain a prediction for y∗ we must not only marginalize over the parameters β, but also
over the distribution of the test sample x∗ as follows:

p(y∗|w∗, w, y) =

∫
x∗

∫
β

p(y∗|x∗, β)p(x∗|w∗)p(β|w, y)dx∗dβ. (1)

This approach is general, since it can be applied with any model that produces a posterior probability
distribution over its parameters p(β|X) and a distribution over its predictions p(y∗|x∗, X) for a given
test sample x∗. What remains for the model to be fully specified is defining the distributions that
generate the training and test data sets. The integral in Eq. 1 will generally be intractable even for the
simplest of Bayesian models and is typically approximated using Monte Carlo: E[y∗|w∗, w, y] ≈
1
N

N∑
i=1

y∗(i), where y∗(i) is a random sample from the posterior predictive distribution in Eq. 1 and

can be obtained by sequentially sampling X(i) from p(X|w), β(i) from p(β|X = X(i), y), x∗(i)
from p(x∗|w∗), and finally, y∗(i) from p(y∗|x∗ = x∗(i), β = β(i)). The densities p(X|w), p(x∗|w∗)

represent our structural measurement error model and are in most practical cases easy to sample
from efficiently. The densities p(β|X = X(i), y) and p(y∗|x∗ = x∗(i), β = β(i)) are the posterior and
posterior predictive for the selected prediction model, conditional on the inputs being fixed, and we
have to be able to efficiently sample from them. This implies that we need an efficient prediction
model or, in the case of Bayesian models, which are typically computationally intensive, an efficient
structural approximation to p(β|X = X(i), y).

2.1 Approximate proportional-odds model

For a binary outcome, Bayesian logistic regression is commonly used, typically with the well-known
Laplace approximation (see [1], pages 213-215) for the posterior. We now derive a Laplace approxi-
mation to the proportional-odds model (ordinal logistic regression), which is the most commonly
used model for the ordinal setting [3]. Let n and m again be the be the number of samples, and
input variables, respectively and k the number of (ordered) categories. The model is based on the
assumption that the odds of all binary decisions between categories are proportional to each other or,
equivalently, that the k − 1 logit surfaces are parallel:

logit(P (Y ≤ j|x)) = log(
P (Y ≤ j|x)

P (Y > j|x)
) = βx+ αj ,

for j ∈ {1, .., k−1}, where β and αj are parameters. For convenience, let α0 = −∞ and αk = +∞.
The outcome probabilities can then be written as:

P (Y = j, x) = P (Y ≤ j|x)− P (Y ≤ j − 1|x) = σ(βx+ αj)− σ(βx+ αj−1), (2)

for j ∈ {1, .., k}, where σ(x) = 1
1+e−x is the sigmoid function.

The proportional odds model and its generalizations (see [4]) have received very little attention
in the Bayesian setting. We now derive the Laplace approximation to the posterior of this model.
First, we place priors on the parameters. To ensure in-order intercepts, we introduce parameters
dj , j ∈ {1, .., k − 1} and a stick-breaking reparameterization of the k − 1 parameters aj with
aj = Σji=1 = di. We place flat priors on the parameters p(di) ∝ 1 and all di are restricted
to be positive, except for d1. As in the binary case, we place normal priors on the coefficients
β1, ..., βm ∼ N (0, σβ). The model’s likelihood is:

p(β, d,D) ∝
n∏
i=1

k∏
j=1

(Ri,j −Ri,j−1)yi=j
m∏
i=1

exp(
β2
i

2σ2
β

),

2



ENG FRA GER ITA SPA

0.12

0.16

0.20

0.24

0.28

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

season progression (number of matches played)

ra
n
k
 p

ro
b
a
b
ili

ty
 s

c
o
re

 (
s
m

o
o
th

e
d
)

ordinal reg. ordinal reg. + noise proposed (Laplace)

Figure 1: Prediction errors over the course of a season, averaged across all seasons and for each
football competition separately.

where Ri,j = σ(βxi + αj), and the log-likelihood is:

L = C − 1

2σ2
β

(β ◦ β) +

n∑
i=1

k∑
j=1

I(yi = j)log(Ri,j −Ri,j−1),

where I is the indicator function and C is a constant. The gradient of the log-likelihood cannot be
written as succinctly as is the case with logistic regression. Instead, we start with the derivative for
some parameter θ:

∂

∂θ
L = − 1

2σ2
β

∂

∂θ
(β ◦ β) +

n∑
i=1

k∑
j=1

∂

∂θ
Li,j ,

where ∂
∂θLi,j = 0 if yi 6= j and

∂

∂θ
Li,j =

1

Ri,j −Ri,j−1

∂

∂θ
(Ri,j −Ri,j−1) =

=
1

Ri,j −Ri,j−1

[
Ri,j(1−Ri,j)

∂

∂θ
(βxi + αj)Ri,j−1(1−Ri,j−1)

∂

∂θ
(βxi + αj−1)

]
otherwise. Due to negligible effect on accuracy and running time, we omit the derivation of the
Hessian and use a numerical approximation for our empirical evaluation.

3 Results

We test our binary approach on basketball game outcomes (which always have a winner) and ordinal
approach on football match outcomes (where draws are possible). In both cases, the count data
are first preprocessed to model the uncertainty in the input variables. As a baseline, binary logistic
regression and ordered logistic regression are included, using mean counts as well as using noisy
test cases. This is obtained by treating the test input variables as random, using the same structural
model for the inputs as for the proposed model, and approximating the expected prediction of the
baseline models with Monte Carlo sampling. For the binary case we also include the proposed
model without marginalization - jointly modeling β and X , including the uncertainty in the form of
an informative prior on X . We implement this model in the probabilistic programming language
and tool for Bayesian inference Stan [5]. Our empirical evaluation procedure is a straightforward
measurement of out-of-sample forecasting accuracy, while respecting the time line. We use train-test
season pairs, training on one season and forecasting on the next. Only data available prior to a match
are used in forecasting it. We measure forecasting accuracy with mean squared error (MSE) in the
binary case and the rank probability score (RPS) in the ordinal case [2].
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Figure 2: Estimated prediction errors for the basketball and football model, respectively across all
train-test season pairs. All errors are relative to the baseline for comparison (logistic and ordinal
regression, respectively).

3.1 Data sets and preprocessing

The basketball data used in our experiments consist of all the regular season and play-off games
in the past 13 seasons (12 train-test season pairs) of the National Basketball Association (NBA)
from 2001/02 to 2013/14. 1 The count variables included in the data are counts of two-point and
three-point shots made and missed, turnovers, offensive and defensive rebounds. We use these counts
indirectly by transforming them into 8 ratios, described in [7], which are known to be good predictors.
Our football data set consists of 5 complete seasons: 2010/11-2014/15 (4 train-test season pairs) for 5
football leagues. 2 In addition to the outcome, we include, for each match and each of the two teams
that participated in the match, the number of goals scored, shots and shots on target, corners, fouls
committed, and yellow and red cards received.

Input variables that are used as predictors in sports are typically count variables or ratios of count
variables, in particular ratios of the form A

A+B , where A and B are sums of count variables. We assume
that the count variables follow time-homogenous independent Poisson distributions. A natural choice
for the prior distribution of the rate parameter λ is the Gamma distribution λ ∼ Gamma(a0, b0),
which is conjugate. Therefore, for each count variable with mean λ̄i over ni games, the posterior
is again Gamma(a0 + λini, b0 + ni), where we select weakly informative priors a0 = b0 = 0.001.
A sum of Gamma distributed random variables with the same scale is again Gamma distributed
with same scale. Furthermore, if A and B are Gamma distributed random variables with the same
scale A ∼ Gamma(α, θ) and B ∼ Gamma(β, θ), then X = A

A+B is distributed X ∼ Beta(α, β).

Therefore, a ratio variable derived from Poisson posterior rates of the form R =
∑

i λAi∑
i λAi+

∑
i λBi

is
Beta distributed: R ∼ Beta(

∑
i λAi,

∑
i λBi).

4 Discussion

As anticipated, the proposed model excels at the beginning of each season and the differences
between models’ prediction errors decrease as the season progresses and input variables become
more certain as can be seen in Fig 1. Similar results were observed for basketball, but are omitted
for brevity. The HMC variant of the proposed ordinal model was not included in the comparison
on football data, because the computation times make it infeasible for practical use. Although
the HMC-based approximation yields relatively good predictions, it is discernibly worse than the
structural approximation. This can, at least in part, be explained by the inferior accuracy of the
HMC-based approximation due to slow mixing (effective sample sizes for β were, on average,≈ 20%

1The data were obtained from http://www.basketball-reference.com/.
2The data were obtained from http://football-data.co.uk/data.php.

4



of the total number of iterations and at 1000 iterations, the estimated MCMC sampling error was, on
average, approximately ≈ 10% of posterior standard deviation). The structural approximation variant
of the proposed model outperforms all other models, as can be seen in Fig. 2, even more convincingly
across the football data sets than basketball. Compared to NBA basketball, football seasons are much
shorter (in terms of matches per team) and there is more uncertainty in the inputs derived from match
statistics.
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