
Measuring the non-asymptotic convergence of sequential
Monte Carlo samplers using probabilistic programming

Marco F. Cusumano-Towner
Computer Science & Artificial Intelligence Laboratory

Massachusetts Institute of Technology
marcoct@mit.edu

Vikash K. Mansinghka
Department of Brain & Cognitive Sciences

Massachusetts Institute of Technology
vkm@mit.edu

1 Introduction

A key limitation of sampling algorithms for approximate inference is that it is difficult to quantify their approximation
error. Widely used sampling schemes, such as sequential importance sampling with resampling and Metropolis-
Hastings, produce output samples drawn from a distribution that may be far from the target posterior distribution.
This paper shows how to upper-bound the symmetric KL divergence between the output distribution of a broad class
of sequential Monte Carlo (SMC) samplers and their target posterior distributions, subject to assumptions about
the accuracy of a separate gold-standard sampler. The proposed method applies to samplers that combine multiple
particles, multinomial resampling, and rejuvenation kernels. The experiments show the technique being used to
estimate bounds on the divergence of SMC samplers for posterior inference in a Bayesian linear regression model and
a Dirichlet process mixture model.

This paper builds on a growing body of work begun by [1] and [2] into estimating upper bounds on KL divergences
between a sampler’s output distribution and the posterior. In variational inference, the KL divergence of the variational
approximation is the gap between the variational lower bound and the log-evidence. [1] and [2] recognized that certain
stochastic inference Markov chains including annealed importance sampling (AIS) and single-particle SMC can be
treated as variational approximations over an extended space that includes auxiliary random choices of the sampler.
A similar insight was introduced independently in [3]. [1] and [2] also showed how to estimate upper bounds on
the log-evidence for datasets simulated from the model using generalizations of the harmonic mean estimator, and
introduced the bidirectional Monte Carlo (BDMC) technique for ‘sandwiching’ the log-evidence between these upper
bounds and variational lower bounds. A related approach for sandwiching the partition function was previously used
in the statistical physics literature [4]. Finally, [1] and [2] recognized that the gap between the bounds serves as an
upper bound on the KL divergence of the sampler, allowing BDMC to be used for measuring sampler accuracy on
simulated datasets.

Two independent papers [5] and [6] built on [1] and [2] to develop the technique further in different ways. Our
previous paper [5] took a probabilistic programming perspective, and showed how to estimate the KL divergence
bound described in [1] and [2] for general samplers using a ‘meta-inference’ sampler that generates sampler execution
histories. [5] also provided meta-inference samplers for sampling importance resampling (SIR) and particle filtering
without MCMC rejuvenation kernels. [5] also introduced an upper bound on the symmetric KL divergence between
the sampler output and the posterior, analyzed optional use of approximate ‘reference’ samples as surrogates for exact
posterior samples (prompting the label ‘subjective divergence’), and related the tightness of the bounds to the accuracy
of the meta-inference sampler. A closely related but independent work [6] introduced Bounding Divergences with
REverse Annealing (BREAD), which uses the same upper bound on the symmetric KL divergence given in [5], and
showed how to evaluate AIS and single-particle SMC approximate inference quality using this bound. BREAD also
includes a heuristic scheme, applicable to hierarchical Bayesian statistical models, for generating simulated datasets
whose divergence profiles are used as proxies for divergence profiles on real-world datasets. [6] also integrated their
technique into existing probabilistic programming platforms.

The main contribution of the current work is a meta-inference construction for generic SMC samplers [7] that is
related to conditional SMC [8] and generalizes the existing meta-inference constructions for AIS, single-particle
SMC, SIR, and particle filtering. By handling a broad class of samplers, the construction increases relevance for real
world problems. The construction allows analysis of samplers that rely on MCMC rejuvenation kernels for good
inference quality, while permitting use of multiple particles (instead of custom model-specific annealing schemes) to
tighten the KL divergence bounds.

2 Background on subjective divergence
We first review the subjective divergence procedure of [5]. Let p denote an approximate inference sampling program
that samples output z ∼ p(z) for z ∈ Z . Suppose p also comes endowed with a side-procedure that evaluates the log
probability log p(z) that the sampler produces any given output z. Let π(z) denote the posterior distribution, and let
π̃(z) = π(z)Zπ̃ denote an unnormalized posterior distribution. Suppose that we have access to samples from π(z).
Then the following is an unbiased Monte Carlo estimate of the symmetric KL divergence between p(z) and π(z):

1

N

N∑
i=1

log
π̃(zi1)

p(zi1)
− 1

M

M∑
j=1

log
π̃(zj2)

p(zj2)
for

zi1 ∼ π(z) i = 1 . . . N

zj2 ∼ p(z) j = 1 . . .M
(1)

Unfortunately, it is often not possible to efficiently evaluate log p(z) for sampling programs that sample auxiliary
random choices during their execution, including MCMC and SMC sampling algorithms for approximate Bayesian
inference. We denote the joint distribution over auxiliary random choices u and output z by p(u, z). It is intractable
to marginalize out the auxiliary random choices u because there is an exponentially large number of terms in the
sum p(z) =

∑
u p(u, z). Therefore, we instead compute the following unbiased estimate of an upper bound on

the symmetric KL divergence, using a ‘meta-inference’ sampler program u|z ∼ q(u; z) which samples execution
histories of the sampler p (assignments to the auxiliary variables u) given the output z:

1

N

N∑
i=1

log
π̃(zi1)q(u

i
1; z

i
1)

p(ui1, z
i
1)

− 1

M

M∑
j=1

log
π̃(zj2)q(u

j
2; z

j
2)

p(uj2, z
j
2)

for
ui1, z

i
1 ∼ π(z)q(u; z) i = 1 . . . N

uj2, z
j
2 ∼ p(u, z) j = 1 . . .M

(2)

The upper bound estimated is the symmetric KL divergence on an extended space that includes the auxiliary variables
u of the sampler. As shown in [5], the tightness of the bound is governed by how well q(u; z) approximates p(u|z) on
average for z ∼ p(z) and z ∼ π(z). When samples from a gold-standard approximate inference ‘reference sampler’
are used in place of posterior samples, the validity of the bound is subject to the accuracy of the reference sampler [5].

3 A probabilistic programming interface for subjective divergence
We now clarify the procedures associated with a sampler that are needed for subjective divergence estimation.
In particular, we introduce the following probabilistic programming interface, which consists of two stochastic
procedures, denoted (p, q).SIMULATE and (p, q).REGENERATE for some distributions p(u, z) and q(u; z):

(z, log(p(u, z)/q(u; z)))← (p, q).SIMULATE() for u, z ∼ p(u, z)
log(p(u, z)/q(u; z))← (p, q).REGENERATE(z) for u|z ∼ q(u; z)

(3)

The SIMULATE procedure runs a sampler with joint distribution p(u, z) over execution histories u and output z, and
returns z. The REGENERATE procedure takes a potential sampler output z as its input, and runs a ‘regeneration’
sampler that samples an execution history u of the original sampler. Both procedures also return a log-weight. The log-
weight returned by SIMULATE can be interpreted as a log harmonic mean estimate of p(z) and the log-weight returned
by REGENERATE can be interpreted as a log importance sampling estimate of p(z). When the sampler is an inference
sampler, we call the regeneration sampler a ‘meta-inference’ sampler. As will be seen, the relationship between the
original sampler and the regeneration sampler is analogous to the relationship between SMC and conditional SMC [8].

Note that the auxiliary random variables u are not exposed through the interface. Also note that a sampler with a
tractable marginal output probability p(z) trivially implements the interface because log(p(u, z)/q(u; z)) reduces to
the log output probability when there are no auxiliary variables u. Algorithm 1 shows a procedure that computes
Equation (2) using the above interface.

Algorithm 1 Subjective divergence estimation using SIMULATE and REGENERATE

Require:Sampler package (p, q) implementing SIMULATE and REGENERATE; posterior sampler z ∼ π(z) or
reference sampler z ∼ r(z); unnormalized posterior probability function π̃(z).
procedure ESTIMATE-KL-BOUND((p, q), π, π̃)

for i← 1 . . . N do
zi1 ∼ π(z) . Replace with sample from reference sampler zi1 ∼ r(z) if exact posterior sampler unavailable
`i1 ← (p, q).REGENERATE(zi1)

end for
for j ← 1 . . .M do
(zj2, `

j
2)← (p, q).SIMULATE()

end for
return 1

N

∑N
i=1(log π̃(z

i
1)− `i1)− 1

M

∑M
j=1(log π̃(z

j
2)− `

j
2)

end procedure

2

4 Implementing SIMULATE and REGENERATE for sequential Monte Carlo
Algorithm 2 below shows how to implement SIMULATE and REGENERATE for the generic SMC sampler template
introduced in [7], with independent resampling. The SMC sampler template (the SIMULATE procedure of Algorithm 2),
permits use of MCMC kernels (within the kt), provided that corresponding ‘backward kernels’ `t are defined such
that the weights can be computed. Note that SIMULATE does not sample from the backward kernels. Building on
the analysis of SMC used in [8], the auxiliary variables u for the SMC sampler are the random choices made during
its execution: the resampling choices ait ∈ {1 . . . N} for (i, t) ∈ {1 . . . N} × {1 . . . T − 1} and IT ∈ {1 . . . N} and
the values of all intermediate particles xit ∈ Xt for (i, t) ∈ {1 . . . N} × {1 . . . T}. The output of the SMC sampler is
denoted z ∈ XT . The SMC stochastic regeneration template (the REGENERATE procedure of Algorithm 2), is given
an output z ∈ XT , and samples an execution history u of the SMC sampler by first choosing the ancestral particle
indices that led to the output (denoted It for t ∈ {1 . . . T}), then sampling from the backward kernels `t in reverse
order to define the ancestral particle values xItt for t ∈ {1 . . . T} that led to the output, and finally running SMC
forward, with the ancestral indices It and values xItt for t ∈ {1 . . . T} fixed. This is related to the conditional SMC
update of [8], but differs in that only an output particle and not a full particle trajectory is required as input. The
log-weight for this sampler and regeneration pair simplify to (see Appendix A for derivation):

log
p(u, z)

q(u; z)
= − log

w1
T+1

T∏
t=1

1

N

N∑
j=1

wjt

 (4)

Algorithm 2 SIMULATE and REGENERATE for SMC samplers with independent resampling

Require:Number of steps T ; hypothesis spaces Xt (not necessarily related) and unnormalized target distributions p̃t
defined on Xt where p̃t(xt) > 0 for xt ∈ Xt for t ∈ {1 . . . T}; sampler for initialization kernel k1 defined on X1 with
k1(x1) > 0 for x1 ∈ X1; samplers for kernels kt indexed by Xt−1 and defined on Xt for t ∈ {2 . . . T}; sampler for
kernel kT+1 indexed by XT and defined on XT ; samplers for kernels `t indexed by Xt and defined on Xt−1 such that
kt(xt;xt−1) > 0 ⇐⇒ `t(xt−1;xt) > 0 for xt−1 ∈ Xt−1, xt ∈ Xt for t ∈ {2 . . . T}; sampler for kernel `T+1 such
that kT+1(z

′; z) > 0 ⇐⇒ `T+1(z; z
′) > 0 for z, z′ ∈ XT ; evaluator procedures for weight functions w1(x1) :=

p̃1(x1)
k1(x1)

, wt(xt−1, xt) := p̃t(xt)`t(xt−1;xt)
p̃t−1(xt−1)kt(xt;xt−1)

for t ∈ {2, . . . , T} and wT+1(xT , x
′
T) :=

`T+1(xT ;x′T)
p̃T (xT)kT+1(x′T ;xT) for

xT , x
′
T ∈ XT ; number of particles N

procedure SIMULATE()
for i← 1 . . . N do

xi1 ∼ k1(·)
wi1 ← w1(x

i
1)

end for
for t← 2 . . . T do

for i← 1 . . . N do
ait−1 ∼ Categorical(NORMALIZE(wt−1))

xit ∼ kt(·;x
ait−1

t−1)

wit ← wt(x
ait−1

t−1 , x
i
t)

end for
end for
IT ∼ Categorical(NORMALIZE(wT))

z ∼ kT+1(·;xITT)

w1
T+1 ← wT+1(x

IT
T , z)

return
(
z,− log

(
w1
T+1

∏T
t=1

1
N

∑N
j=1 w

j
t

))
end procedure

procedure RAND-ANCESTRY(N , T)
for t← 1 . . . T do

It ∼ Uniform(1, . . . , N)
end for
return (I1, . . . , IT)

end procedure

procedure REGENERATE(z)
(I1, . . . , IT) ∼RAND-ANCESTRY(N , T)
xITT ∼ `T+1(·; z)
for t← T − 1 . . . 1 do

xItt ∼ `t+1(·;xIt+1

t+1)
end for
for i← 1 . . . N do

if i 6= I1 then
xi1 ∼ k1(·)

end if
wi1 ← w1(x

i
1)

end for
for t← 2 . . . T do

for i← 1 . . . N do
if i = It then

ait−1 ← It−1
else

ait−1 ∼ Categorical(NORMALIZE(wt−1))

xit ∼ kt(·;x
ait−1

t−1)
end if
wit ← wt(x

ait−1

t−1 , x
i
t)

end for
end for
w1
T+1 ← wT+1(x

IT
T , z)

return − log
(
w1
T+1

∏T
t=1

1
N

∑N
j=1 w

j
t

)
end procedure

3

Having specified how to implement SIMULATE and REGENERATE for this generic variant of SMC, we can now
estimate subjective divergences for SMC. We illustrate the use of Algorithm 1 and Algorithm 2 to estimate subjective
bounds on symmetric KL divergences of SMC samplers and black box variational approximations to the posterior in
Figure 1. Note that we optimized the performance of variational inference and SMC implementations separately, and
the relative runtimes of the two approaches are not meant to be informative.

10-1 100 101 102 103

Median runtime (seconds)

100

80

60

40

20

0

E
LB

O
 e

st
im

a
te

BBVI 1

BBVI 2

SMC IMH N=1

SMC IMH N=40

SMC RW N=1

SMC RW N=40

(a)

10-1 100 101 102 103

Median runtime (seconds)

0

10

20

30

40

50

60

K
L

b
o
u
n
d
 e

st
im

a
te

(b)

100 101 102 103

Median runtime (seconds)

100

80

60

40

20

0

E
LB

O
 e

st
im

a
te

SMC N=1

SMC N=4

SMC N=10

SMC N=40

(c)

100 101 102 103

Median runtime (seconds)

0

10

20

30

40

50

60

K
L

b
o
u
n
d
 e

st
im

a
te

(d)

Figure 1: (a) and (b) show estimated ELBO lower bounds and estimated upper bounds on KL divergence to the
posterior, respectively, for SMC samplers and two black box variational inference (BBVI) programs, in a Bayesian
linear regression inference problem. SMC IMH samplers use single-site independent Metropolis-Hastings (MH)
rejuvenation kernels, and SMC RW use single-site random-walk MH rejuvenation kernels. BBVI 1 and BBVI 2
optimize over different variational families. (c) and (d) show estimated ELBO lower bounds and subjective upper
bounds on KL divergence, for SMC with single-site Gibbs rejuvenation kernels over cluster assignments in a Dirichlet
process mixture model problem with collapsed cluster parameters. The SMC samplers in both problems use sequential
observation to define the sequence of target distributions, and were parameterized by the number of particles (N,
represented by color) and the number of applications of the MCMC rejuvenation kernels between target distribution
updates (distinct estimates of the same color). Particles were initialized from the prior. Exact posterior reference
samples were used for KL bound estimation in (a) and (b), and samples from a gold-standard approximate MCMC
reference sampler were used in lieu of posterior samples for KL bound estimation in (c) and (d). In (a) and (b), the
random-walk MH kernels appear more effective than the independent MH kernels. Increasing the number of particles
tightens the KL divergence bound when the effect of rejuvenation kernels has already been saturated (compare SMC
RW N=1 to SMC RW N=40).

References

[1] Roger Baker Grosse. Model selection in compositional spaces. PhD thesis, Massachusetts Institute of Technology,
2014.

[2] Roger B Grosse, Zoubin Ghahramani, and Ryan P Adams. Sandwiching the marginal likelihood using bidirectional
Monte Carlo. arXiv preprint arXiv:1511.02543, 2015.

4

[3] Tim Salimans, Diederik P. Kingma, and Max Welling. Markov chain monte carlo and variational inference:
Bridging the gap. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 1218–1226, 2015.

[4] John E Hunter III, William P Reinhardt, and Thomas F Davis. A finite-time variational method for determining
optimal paths and obtaining bounds on free energy changes from computer simulations. The Journal of chemical
physics, 99(9):6856–6864, 1993.

[5] Marco F Cusumano-Towner and Vikash K Mansinghka. Quantifying the probable approximation error of
probabilistic inference programs. arXiv preprint arXiv:1606.00068, 2016.

[6] Roger B Grosse, Siddharth Ancha, and Daniel M Roy. Measuring the reliability of MCMC inference with
bidirectional Monte Carlo. arXiv preprint arXiv:1606.02275, 2016.

[7] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo samplers. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.

[8] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte carlo methods. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342, 2010.

5

Appendix A: Derivation of log weight for SMC

Recall that the set of auxiliary random choices u for the SMC sampler of Algorithm 2 is the set of all resampling
choices ait ∈ {1 . . . N} for (i, t) ∈ {1 . . . N} × {1 . . . T − 1} and IT ∈ {1 . . . N} and the values of all intermediate
particles xit ∈ Xt for (i, t) ∈ {1 . . . N}× {1 . . . T}. The joint probability over auxiliary random choices u and output
z for an execution of SMC’s SIMULATE is:

p(u, z) :=

[
N∏
i=1

k1(x
i
1)

] T∏
t=2

N∏
i=1

w
ait−1

t−1∑N
j=1 w

j
t−1

kt(x
i
t;x

ait−1

t−1)

[wITT∑N
j=1 w

j
T

kT+1(z;x
IT
T)

]

The joint probability over auxiliary random choices u for an execution of SMC’s REGENERATE is:

q(u; z) :=

[
1

NT

][
`T+1(x

IT
T ; z)

T∏
t=2

`t(x
It−1

t−1 ;x
It
t)

] N∏
i=1
i 6=I1

k1(x
i
1)

 T∏
t=2

N∏
i=1
i 6=It

w
ait−1

t−1∑N
j=1 w

j
t−1

kt(x
i
t;x

ait−1

t−1)

where the first N−T factor is due to RAND-ANCESTRY. First, note that wit > 0 for all (i, t) ∈ {1 . . . N} × {1 . . . T}
for u, z ∼ p(u, z) and for u|z ∼ q(u; z). This is true for t = 1 by the requirements p̃1(x1) > 0 and k1(x1) > 0 for

all x1 ∈ X1. For t ∈ {2 . . . T}, wit =
p̃t(x

i
t)`t(x

ai
t−1

t−1 ;xi
t)

p̃t−1(x
ai
t−1

t−1)kt(xi
t;x

ai
t−1

t−1)

. Either xit ∼ kt(·;x
ait−1

t−1) or x
ait−1

t−1 ∼ `t(·;xit). Using

the requirements p̃t(xt) > 0 for all xt ∈ Xt for all t ∈ {1 . . . T} and kt(xt;xt−1) > 0 ⇐⇒ `t(xt−1;xt) > 0 for
all xt−1 ∈ Xt−1, xt ∈ Xt for all t ∈ {2 . . . T}, gives wit > 0 for all (i, t) ∈ {1 . . . N} × {2 . . . T}.
To see that p(u, z) > 0 ⇐⇒ q(u; z) > 0, first consider some u, z such that p(u, z) > 0. Since p(u, z) > 0

we have k1(xi1) > 0 for i ∈ {1 . . . N}. We also have kt(xit;x
ait−1

t−1) > 0 which implies `t(x
ait−1

t−1 ;xit) > 0 for
(i, t) ∈ {1 . . . N} × {2 . . . T}, and kT+1(z;x

IT
T) > 0, which implies `T+1(x

IT
T ; z) > 0. Combined with wit > 0 for

all (i, t) ∈ {1 . . . N} × {1 . . . T} these ensure q(u; z) is defined for output z and q(u; z) > 0.

Next, assume q(u; z) is defined for output z and q(u; z) > 0. Then we have `T+1(x
IT
T ; z) > 0 which implies

kT+1(z;x
IT
T) > 0. We also have `t(x

It−1

t−1 ;x
It
t) > 0 for t ∈ {2 . . . T}, which implies kt(xit;x

ait−1

t−1) > 0 for

(i, t) ∈ {(It, t)|t ∈ {2 . . . T}}. We also have kt(xit;x
ait−1

t−1) > 0 for (i, t) ∈ {(i, t)|i 6= It, t ∈ {2 . . . T}}. Therefore
p(u, z) > 0.

The weight p(u, z)/q(u; z) is then defined for all u, z ∼ p(u, z) and u|z ∼ q(u; z), and is:

p(u, z)

q(u; z)
=

[∏N
i=1 k1(x

i
1)
] [∏T

t=2

∏N
i=1

w
ai
t−1

t−1∑N
j=1 w

j
t−1

kt(x
i
t;x

ai
t−1

t−1)

] [
w

IT
T∑N

j=1 w
j
T

kT+1(z;x
IT
T)

]
[

1
NT

] [
`T+1(x

IT
T ; z)

∏T
t=2 `t(x

It−1
t−1 ;xItt)

] [∏N
i=1
i 6=I1

k1(xi1)

][∏T
t=2

∏N
i=1
i 6=It

w
ai
t−1

t−1∑N
j=1 w

j
t−1

kt(xit;x
ai
t−1

t−1)

]

=

k1(x
I1
1)

[∏T
t=2

∏N
i=1 w

ai
t−1

t−1 kt(x
i
t;x

ai
t−1

t−1)

] [
wIT

T kT+1(z;x
IT
T)
]

[∏T
t=1

1
N

∑N
j=1 w

j
t

] [
`T+1(x

IT
T ; z)

∏T
t=2 `t(x

It−1
t−1 ;xItt)

] [∏T
t=2

∏N
i=1
i 6=It

w
ai
t−1

t−1 kt(x
i
t;x

ai
t−1

t−1)

]

=
k1(x

I1
1)
[∏T

t=2 w
It−1
t−1 kt(x

It
t ;x

It−1
t−1)

] [
wIT

T kT+1(z;x
IT
T)
]

[∏T
t=1

1
N

∑N
j=1 w

j
t

] [
`T+1(x

IT
T ; z)

∏T
t=2 `t(x

It−1
t−1 ;xItt)

]

=

k1(x
I1
1)

[∏T
t=2

kt(x
It
t ;x

It−1
t−1)

`t(x
It−1
t−1 ;x

It
t)

]
kT+1(z;x

IT
T

)

`T+1(x
IT
T

;z)

[
p̃1(x

I1
1)

k1(x
I1
1)

∏T
t=2

p̃t(x
It
t)`t(x

It−1
t−1 ;x

It
t)

p̃t−1(x
It−1
t−1)kt(x

It
t ;x

It−1
t−1)

]
[∏T

t=1
1
N

∑N
j=1 w

j
t

]

=

p̃1(x
I1
1)

[∏T
t=2

p̃t(x
It
t)

p̃t−1(x
It−1
t−1)

]
kT+1(z;x

IT
T

)

`T+1(x
IT
T

;z)∏T
t=1

1
N

∑N
j=1 w

j
t

=

p̃T (x
IT
T)

kT+1(z;x
IT
T

)

`T+1(x
IT
T

;z)∏T
t=1

1
N

∑N
j=1 w

j
t

=
1

w1
T+1

∏T
t=1

1
N

∑N
j=1 w

j
t

6

Appendix B: SMC with sequential observation and detailed balance kernels

In the experiments, we use SMC programs defined as follows. Let X0 be a hypothesis space, corresponding to ‘global’
latent variables. Let Et for t ∈ {1 . . . T} be additional hypothesis space extensions, corresponding for ‘local’ latent
variables for each of T observations yt ∈ Yt for t ∈ {1 . . . T}. Define Xt := Xt−1 × Et for t ∈ {1 . . . T}. We use
indexing notation where as:t := (as, . . . , at) for any a, s, t. Let p(θ, e1:T , y1:T) denote the model’s joint probability
of (θ, e1:T , y1:T) ∈ XT × Y1 × · · · × YT , where θ ∈ X0 and et ∈ Et for t ∈ {1 . . . T}. Assume for the given
observation set y1:T that p(θ, e1:T , y1:T) > 0 for all (θ, e1:T) ∈ XT . The target distribution of the SMC algorithm
is the conditional distribution p(θ, e1:T |y1:T) ∝ p(θ, e1:T , y1:T). Define the intermediate target distributions by
pt(θ, e1:t) := p(θ, e1:t|y1:t), and the unnormalized target probability functions by p̃t(θ, e1:t) := p(θ, e1:t, y1:t) for
t ∈ {1 . . . T}. Define the initialization kernel as: k1(θ, e1) := p(θ, e1). This kernel samples from the model’s prior
distribution over the global latents and the local latents for the first observation. Suppose there exist ‘detailed balance
kernels’ dt(θ′, e′1:t; θ, e1:t) for t ∈ {1, . . . , T}. Kernel dt is a collection of distributions over elements of Xt, indexed
by elements of Xt. Each detailed balance kernel dt must satisfy the detailed balance property with respect to the
intermediate target distribution pt:

dt(θ
′, e′1:t; θ, e1:t)pt(θ, e1:t) = dt(θ, e1:t; θ

′, e′1:t)pt(θ
′, e′1:t) for all (θ, e1:t), (θ

′, e′1:t) ∈ Xt (5)

Equivalently:

dt(θ
′, e′1:t; θ, e1:t)p̃t(θ, e1:t) = dt(θ, e1:t; θ

′, e′1:t)p̃t(θ
′, e′1:t) for all (θ, e1:t), (θ

′, e′1:t) ∈ Xt (6)

Define kt(θ′, e′1:t; θ, e1:t−1) := dt−1(θ
′, e′1:t−1; θ, e1:t−1)p(e

′
t|θ′, e′1:t−1, y1:t−1) for t ∈ {2 . . . T}. Each kt for

t ∈ {2 . . . T} is a collection of distributions over Xt, indexed by elements of Xt−1. It is possible to sample from kt by
sampling from the detailed balance kernel dt−1 and then sampling from the model prior distribution over the new local
latents p(e′t|θ′, e′1:t−1, y1:t−1). Intuitively, the kernel kt first performs inference dt−1 targeting p(θ, e1:t−1|y1:t−1),
then extends the hypothesis space to include values of the local latent variables for observation t by sampling
from the prior. Define kT+1 := dT . Intuitively, kernel kT+1 performs inference dT targeting the final target
distribution p(θ, e1:T |y1:T). Define the ‘backward kernels’ by `t(θ′, e′1:t−1; θ, e1:t) := dt−1(θ

′, e′1:t−1; θ, e1:t−1) for
t ∈ {2 . . . T}. Each kernel `t for t ∈ {2 . . . T} is a collection of distributions over Xt−1, indexed by elements of
Xt. To sample from `t, we simply sample from the detailed balance kernel dt−1. Finally, define `T+1 := dT . First,
we show that kt(θ′, e′1:t; θ, e1:t−1) > 0 ⇐⇒ `t(θ, e1:t−1; θ

′, e′1:t) > 0 for all t ∈ {2 . . . T}. This follows from
the detailed balance requirement (Equation 5) and from the fact that pt(θ, e1:t) > 0 for all (θ, e1:t) ∈ Xt and for
all t ∈ {2 . . . T}. The same argument applies to kT+1 and `T+1. Note that we do not require the detailed balance
kernels to be ergodic. For example, a given kernel dt may only update one of the components of (θ, e1:t). Given these
definitions, the weight functions become:

w1(θ, e1) :=
p̃1(θ, e1)

k1(θ, e1)
=
p(θ, e1, y1)

p(θ, e1)
= p(y1|θ, e1) (7)

wt((θ, e1:t−1), (θ
′, e′1:t)) :=

p̃t(θ
′, e′1:t)

p̃t−1(θ, e1:t−1)

`t(θ, e1:t−1; θ
′, e′1:t)

kt(θ′, e′1:t; θ, e1:t−1)
(8)

=
p(θ′, e′1:t, y1:t)

p(θ, e1:t−1, y1:t−1)

dt−1(θ, e1:t−1; θ
′, e′1:t−1)

dt−1(θ′, e′1:t−1; θ, e1:t−1)p(e
′
t|θ′, e′1:t−1, y1:t−1)

(9)

(10)

Then by detailed balance:

dt−1(θ, e1:t−1; θ
′, e′1:t−1)

dt−1(θ′, e′1:t−1; θ, e1:t−1)
=

p̃t−1(θ, e1:t−1)

p̃t−1(θ′, e′1:t−1)
=

p(θ, e1:t−1, y1:t−1)

p(θ′, e′1:t−1, y1:t−1)
(11)

wt((θ, e1:t−1), (θ
′, e′1:t)) =

p(θ′, e′1:t, y1:t)

p(θ, e1:t−1, y1:t−1)

p(θ, e1:t−1, y1:t−1)

p(θ′, e′1:t−1, y1:t−1)p(e
′
t|θ′, e′1:t−1, y1:t−1)

(12)

=
p(θ′, e′1:t, y1:t)

p(θ, e1:t−1, y1:t−1)

p(θ, e1:t−1, y1:t−1)

p(θ′, e′1:t, y1:t−1)
=

p(θ′, e′1:t, y1:t)

p(θ′, e′1:t, y1:t−1)
(13)

= p(yt|θ′, e′1:t, y1:t−1) (14)

Finally, wT+1((θ, e1:T), (θ
′, e′1:T)) = 1/p(θ′, e′1:T , y1:T). Algorithm 3 shows SIMULATE and REGENERATE special-

ized for sequential observation and detailed balance kernels, as used in the experiments. In Algorithm 3, parenthesized
superscripts indicate the step t of the SMC algorithm, whereas subscripts indicate observation indices (e.g. ei(t)t−1 is the
value of local latents for observation t− 1 in particle i at step t of SMC).

7

Algorithm 3 SIMULATE and REGENERATE for SMC with sequential observation and detailed balance

procedure SIMULATE()
for i← 1 . . . N do

θi(1) ∼ p(θ) . Sample global latents θ from the prior
e
i(1)
1 ∼ p(e1|θ) . Sample local latents for observation 1 by forward sampling in the model
wi1 ← p(y1|θi(1), ei(1)1) . Evaluate likelihood of y1

end for
for t← 2 . . . T do

for i← 1 . . . N do
ait−1 ∼ Categorical(NORMALIZE(wt−1)) . Sample the index of the parent particle

θi(t), e
i(t)
1:t−1 ∼ dt−1(·; θa

i
t−1(t−1), e

ait−1(t−1)
1:t−1) . Detailed balance targeting p(θ, e1:t−1|y1:t−1)

e
i(t)
t ∼ p(et|θi(t), ei(t)1:t−1) . Sample local latents for observation t by forward sampling in the model

wit ← p(yt|θi(t), ei(t)1:t) . Evaluate likelihood of yt
end for

end for
IT ∼ Categorical(NORMALIZE(wT)) . Sample output particle index
θ, e1:T ∼ dT (·; θIT (T), e

IT (T)
1:T) . Detailed balance targeting p(θ, e1:T |y1:T)

return
(
(θ, e1:T) , log

p(θ,e1:T ,y1:T)∏T
t=1

1
N

∑N
j=1 w

j
t

)
. Return output sample and log-weight

end procedure

procedure REGENERATE((θ, e1:T))
(I1, . . . , IT) ∼RAND-ANCESTRY(N , T)
θIT (T), e

IT (T)
1:T ∼ dT (·; θ, e1:T) . Detailed balance targeting p(θ, e1:T |y1:T)

for t← T − 1 . . . 1 do
θIt(t), e

It(t)
1:t ∼ dt(·; θIt+1(t+1), e

It+1(t+1)
1:t) . Detailed balance targeting p(θ, e1:t|y1:t)

end for
for i← 1 . . . N do

if i 6= I1 then
θi(1) ∼ p(θ) . Sample global latents θ from the prior
e
i(1)
1 ∼ p(e1|θ) . Sample local latents for observation 1 by forward sampling in the model

end if
wi1 ← p(y1|θi(1), ei(1)1) . Evaluate likelihood of y1

end for
for t← 2 . . . T do

for i← 1 . . . N do
if i = It then

ait−1 ← It−1
else

ait−1 ∼ Categorical(NORMALIZE(wt−1)) . Sample the index of the parent particle

θi(t), e
i(t)
1:t−1 ∼ dt−1(·; θa

i
t−1(t−1), e

ait−1(t−1)
1:t−1) . Detailed balance targeting p(θ, e1:t−1|y1:t−1)

e
i(t)
t ∼ p(et|θi(t), ei(t)1:t−1) . Sample local latents for observation t by forward sampling in the model

end if
wit ← p(yt|θi(t), ei(t)1:t) . Evaluate likelihood of yt

end for
end for
return log p(θ,e1:T ,y1:T)∏T

t=1
1
N

∑N
j=1 w

j
t

. Return the log-weight

end procedure

8

Appendix C: Using cycles of detailed balance kernels

Recall that we did not require the detailed balance kernels dt for t ∈ {1 . . . T} to be ergodic. In particular, each dt can
update only a subset of the random variables in (θ, e1:t) ∈ Xt. We now show that Algorithm 3 can be used without
modification when the kernels kt for t ∈ {2 . . . T − 1} utilize instead cycles of detailed balance kernels each targeting
the same distribution pt−1(θ, e1:t−1), provided the corresponding kernels `t sample from the same cycle in reverse
order. Note that the cycle of detailed balance kernels may not itself satisfy detailed balance.

For some 1 < r ≤ s < T , suppose that Xr−1 = Xr = · · · = Xs, and p̃r−1 = p̃r = · · · = p̃s (meaning
the target distributions do not change from t = r − 1 through t = s). Suppose kt(x′;x) = dt−1(x

′;x) and
`t(x

′;x) = dt−1(x
′;x) for x, x′ ∈ Xr−1 for t ∈ {r . . . s} where dt−1 is a detailed balance kernel targeting p̃r−1, for

r ≤ t ≤ s. Then for r ≤ t ≤ s the weights are:

wt(xt−1, xt) =
p̃r−1(xt)

p̃r−1(xt−1)

dt−1(xt−1;xt)

dt−1(xt;xt−1)
=

p̃r−1(xt)

p̃r−1(xt−1)

p̃r−1(xt−1)

p̃r−1(xt)
= 1

Consider modifying the SIMULATE and REGENERATE procedures to replace ait−1 ∼
Categorical(NORMALIZE(wt−1)) with ait−1 ← i for r + 1 ≤ t ≤ s + 1, and modifying RAND-ANCESTRY
(used by REGENERATE) to replace It ∼ Uniform(1 . . . N) with It ← It−1 for r + 1 ≤ t ≤ s + 1. The joint
probability for SIMULATE is then divided by the probability of the excluded random choices, which is 1/NN(s−r+1)

since each weight wit is deterministically 1 for r ≤ t ≤ s. The joint probability for REGENERATE is then divided
by the probability of the excluded random choices, which is 1/N (N−1)(s−r+1) · 1/Ns−r+1 = 1/NN(s−r+1).
The weight expression is therefore unchanged, but can be simplified (because weights wit for r ≤ t ≤ s are
deterministically 1) to:

p(u, z)

q(u; z)
=

1

w1
T+1

(∏r−1
t=1

1
N

∑N
j=1 w

j
t

)
·
(∏T

t=s+1
1
N

∑N
j=1 w

j
t

)
In a concise implementation of these modified procedures, the steps r through s+ 1 are collapsed into one step, with
the cycle of detailed balance kernels in (kr = dr−1, . . . , ks = ds−1, ks+1) taking the role of a single kt in SIMULATE
and REGENERATE and the reverse cycle in (`s+1, `s = ds−1, . . . , `r = dr−1) taking the role of the corresponding `t
in REGENERATE.

To see that kT+1 and `T+1 can also be replaced with cycles of detailed balance kernels, consider introducing new
random variables z1, . . . , zR ∈ X T for some R ≥ 1 into both SIMULATE and REGENERATE as follows: In the joint
probability expression p(u, z) replace kT+1(z;x

It
T) with:

kT+1(z1;x
IT
T)

R∏
r=2

kT+r(zr; zr−1)kT+R+1(z; zR)

Let kT+1, . . . , kT+R+1 be detailed balance kernels targeting p̃T . This corresponds to applying a sequence of detailed
balance kernels immediately prior to returning the output z in SIMULATE. Similarly, in the joint probability expression
q(u; z), replace `T+1(x

IT
T ; z) with:

kT+1(x
IT
T ; z1)

R∏
r=2

kT+r(zr−1; zr)kT+R+1(zR; z)

This corresponds to applying the same cycle of detailed balance kernels to the input of REGENERATE that were
applied before the output of SIMULATE, but in the reverse order. The new log weight is then adjusted by a factor of:

kT+1(z1;x
IT
T)
∏R
r=2 kT+r(zr; zr−1)kT+R+1(z; zR)

kT+1(x
IT
T ; z1)

∏R
r=2 kT+r(zr−1; zr)kT+R+1(zR; z)

`T+1(x
IT
T ; z)

kT+1(z;x
IT
T)

=
p̃T (z1)

p̃T (x
IT
T)

R∏
r=2

p̃T (zr)

p̃T (zr−1)

p̃T (z)

p̃T (zR)

p̃T (x
IT
T)

p̃T (z)
= 1

Therefore, kT+1 and `T+1 can be replaced with a cycle of detailed balance kernels targeting pT and the reversed
cycle, respectively, without modifying the expression for the returned log-weight value, which is still computed using
w1
T+1 = wT+1(x

IT
T , z), and does not depend on the intermediate values z1, . . . , zR.

9

