
Variational Lossy Autoencoder

Xi Chen†‡, Diederik P. Kingma‡, Tim Salimans‡, Yan Duan†‡, Prafulla Dhariwal?,
John Schulman†‡, Ilya Sutskever‡, Pieter Abbeel†‡

† UC Berkeley, Department of Electrical Engineering and Computer Science
‡ OpenAI

? MIT, Department of Electrical Engineering and Computer Science
{peter,dpkingma,tim,rocky}@openai.com

prafulla@mit.edu
{joschu,ilyasu,pieter}@openai.com

Abstract

Representation learning seeks to expose certain aspects of observed data in a
learned representation that’s amenable to downstream tasks like classification. For
instance, a good representation for 2D images might be one that describes only
global structure and discards information about detailed texture. In this paper,
we present a simple but principled method to learn such global representations
by combining Variational Autoencoder (VAE) with neural autoregressive models
such as RNN, MADE and PixelRNN/CNN. Our proposed VAE model allows us
to have control over what the global latent code can learn and by designing the
architecture accordingly, we can force the global latent code to discard irrelevant
information such as texture in 2D images, and hence the code only “autoencodes”
data in a lossy fashion. In addition, by leveraging autoregressive models as both
prior distribution p(z) and decoding distribution p(x|z), we can greatly improve
generative modeling performance of VAEs, achieving new state-of-the-art results
on MNIST, OMNIGLOT and Caltech-101 Silhouettes density estimation tasks.

1 Introduction

A popular approach for learning representations is to fit a probabilistic latent variable model, an
approach also known as analysis-by-synthesis (Yuille & Kersten, 2006; Nair et al., 2008). By learning
a generative model of the data with the appropriate hierarchical structure of latent variables, it is
hoped that the model will somehow uncover and untangle those causal sources of variations that
we happen to be interested in. However, without further assumptions, representation learning via
generative modeling is ill-posed: there are many different possible generative models with different
(or no) kinds of latent variables that all encode the same probability density function on our observed
data. Thus, the results we empirically get using this approach are highly dependent on the specific
architectural and modeling choices that are made. Moreover, the objective that we optimize is often
completely disconnected from the goal of learning a good representation: An autoregressive model of
the data may achieve the same log-likelihood as a variational autoencoder (VAE) (Kingma & Welling,
2013), but the structure learned by the two models is completely different: the latter typically has a
clear hierarchy of latent variables, while the autoregressive model has no stochastic latent variables at
all (although it is conceivable that the deterministic hidden units of the autoregressive models will
have meaningful and useful representations). For this reason, autoregressive models have thus far not
been popular for the purpose of learning representations, even though they are extremely powerful as
generative models (see e.g. van den Oord et al., 2016).

A natural question becomes: is it possible to have a model that is a powerful density estimator and at
the same time has the right hierarchical structure for representation learning? A potential solution
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would be to use a hybrid model that has both the latent variable structure of a VAE, as well as
the powerful recurrence of an autoregressive model. However, earlier attempts at combining these
two kinds of models have run into the problem that the autoregressive part of the model ends up
explaining all structure in the data, while the latent variables are not used (Fabius & van Amersfoort,
2014; Chung et al., 2015; Bowman et al., 2015; Serban et al., 2016; Fraccaro et al., 2016; Xu &
Sun, 2016). We analyze why this happens, and we propose a principled solution that avoids this
problem. The model we propose performs well as a density estimator, as evidenced by state-of-the-art
log-likelihood results on MNIST, OMNIGLOT and Caltech-101, and also has a structure that is
uniquely suited for learning interesting global representations of data.

2 VAEs do not Autoencode in General

VAE is frequently interpreted as a regularized autoencoder (Kingma & Welling, 2013; Zhang et al.,
2016), but the conditions under which it is guaranteed to autoencode (reconstruction being close to
original datapoint) are not discussed. In this section, we discuss the often-neglected fact that VAEs
do not always autoencode and give explicit reasons why previous attempts to apply VAE in sequence
modeling found that the latent code is generally not used (Bowman et al., 2015; Serban et al., 2016;
Fraccaro et al., 2016). The understanding of when VAE does autoencode will be an essential building
piece for VLAE.

2.1 Technical Background

Let x be observed variables, z latent variables and let p(x, z) be the parametric model of their joint
distribution, called the generative model defined over the variables. Given a dataset X = {x1, ...,xN}
we typically wish to perform maximum likelihood learning of its parameters, i.e., to maximize

log p(X) =

N∑
i=1

log p(x(i)), (1)

but in general this marginal likelihood is intractable to compute or differentiate directly for flexible
generative models that have high-dimensional latent variables and flexible priors and likelihoods. A
solution is to introduce q(z|x), a parametric inference model defined over the latent variables, and
optimize the variational lower bound on the marginal log-likelihood of each observation x:

log p(x) ≥ Eq(z|x) [log p(x, z)− log q(z|x)] = L(x; θ) (2)

where θ indicates the parameters of p and q models.

There are various ways to optimize the lower boundL(x; θ); for continuous z it can be done efficiently
through a re-parameterization of q(z|x) (Kingma & Welling, 2013; Rezende et al., 2014).

This way of optimizing the variational lower bound with a parametric inference network and re-
parameterization of continuous latent variables is usually called VAE (Kingma & Welling, 2013). The
“autoencoding” terminology comes from the fact that the lower bound L(x; θ) can be re-arranged:

L(x; θ) = Eq(z|x) [log p(x, z)− log q(z|x)] (3)

= Eq(z|x) [log p(x|z)]−DKL(q(z|x)||p(z)) (4)

where the first term can be seen as the expectation of negative reconstruction error and the KL
divergence term can be seen as a regularizer, which as a whole could be seen as a regularized
autoencoder loss with q(z|x) being the encoder and p(x|z) being the decoder. In the context of
2D images modeling, the decoding distribution p(x|z) is usually chosen to be a simple factorized
distribution, i.e. p(x|z) =

∏
i p(xi|z), and this setup often yields a sharp decoding distribution

p(x|z) that tends to reconstruct original datapoint x exactly.

2.2 Bits-back Coding and Information preference

It’s straightforward to see that having a more powerful p(x|z) will make VAE’s marginal generative
distribution p(x) =

∫
z
p(z)p(x|z)dz more expressive. This idea has been explored extensively

in previous work applying VAE to sequence modeling (Fabius & van Amersfoort, 2014; Chung
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et al., 2015; Bowman et al., 2015; Serban et al., 2016; Fraccaro et al., 2016; Xu & Sun, 2016),
where the decoding distribution is a powerful RNN with autoregressive dependency, i.e., p(x|z) =∏
i p(xi|z,x<i). Since RNNs are universal function approximators and any joint distribution over x

admits an autoregressive factorization, the RNN autoregressive decoding distribution can in theory
represent any probability distribution even without dependence on z.

However, previous attempts have found it hard to benefit from VAE when using an expressive
decoding distribution p(x|z). Indeed it’s documented in detail by Bowman et al. (2015) that in most
cases when an RNN autoregressive decoding distribution is used, the latent code z is completely
ignored and the model regresses to be a standard unconditional RNN autoregressive distribution
that doesn’t depend on the latent code. This phenomenon is commonly attributed to “optimization
challenges” of VAE in the literature (Bowman et al., 2015; Serban et al., 2016; Kaae Sønderby et al.,
2016) because early in the training the approximate posterior q(z|x) carries little information about
datapoint x and hence it’s easy for the model to just set the approximate posterior to be the prior to
avoid paying any regularization cost DKL(q(z|x)||p(z)).
Here we present a simple but often-neglected observation that this phenomenon arises not just due to
optimization challenges and instead even if we can solve the optimization problems exactly, the latent
code should still be ignored at optimum for most practical instances of VAE that have intractable true
posterior distributions and sufficiently powerful decoders. It is easiest to understand this observation
from a Bits-Back Coding perspective of VAE.

It is well-known that Bits-Back Coding is an information-theoretic view of Variational Inference
(Hinton & Van Camp, 1993; Honkela & Valpola, 2004) and specific links have been established
between Bits-Back Coding and the Helmholtz Machine/VAE (Hinton & Zemel, 1994; Gregor et al.,
2013). Here we briefly relate VAE to Bits-Back Coding for self-containedness:

First recall that the goal of designing an efficient coding protocol is to minimize the expected code
length of communicating x. To explain Bits-Back Coding, let’s first consider a more naive coding
scheme. VAE can be seen as a way to encode data in a two-part code: p(z) and p(x|z), where z can
be seen as the essence/structure of a datum and is encoded first and then the modeling error (deviation
from z’s structure) is encoded next. The expected code length under this naive coding scheme for a
given data distribution is hence:

Cnaive(x) = Ex∼data,z∼q(z|x) [− log p(z)− log p(x|z)] (5)

This coding scheme is, however, inefficient. Bits-Back Coding improves on it by noticing that the
encoder distribution q(z|x) can be used to transmit additional information, up to H(q(z|x)) expected
nats, as long as the receiver also has access to q(z|x). The decoding scheme works as follows: a
receiver first decodes z from p(z), then decodes x from p(x|z) and, by running the same approximate
posterior that the sender is using, decodes a secondary message from q(z|x). Hence, to properly
measure the code length of VAE’s two-part code, we need to subtract the extra information from
q(z|x). Using Bit-Back Coding, the expected code length equates to the negative variational lower
bound or the so-called Helmholtz variational free energy, which means minimizing code length is
equivalent to maximizing the variational lower bound:

CBitsBack(x) = Ex∼data,z∼q(z|x) [log q(z|x)− log p(z)− log p(x|z)] (6)

= Ex∼data [−L(x)] (7)

Casting the problem of optimizing VAE into designing an efficient coding scheme easily allows us to
reason when the latent code z will be used: the latent code z will be used when the two-part code
is an efficient code. Recalling that the lower-bound of expected code length for data is given by
the Shannon entropy of data generation distribution: H(data) = Ex∼data [− log pdata(x)], we can
analyze VAE’s coding efficiency:

CBitsBack(x) = Ez∼q(z|x) [log q(z|x)− log p(z)− log p(x|z)] (8)

= Ex∼data [− log p(x) +DKL(q(z|x)||p(z|x))] (9)
≥ Ex∼data [− log pdata(x) +DKL(q(z|x)||p(z|x))] (10)
= H(data) + Ex∼data [DKL(q(z|x)||p(z|x))] (11)
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Since Kullback Leibler divergence is always non-negative, we know that using the two-part code
derived from VAE suffers at least an extra code length of DKL(q(z|x)||p(z|x)) nats for using a
posterior that’s not precise. Many previous works in Variational Inference have designed flexible
approximate posteriors to better approximate true posterior (Salimans et al., 2014; Rezende &
Mohamed, 2015; Tran et al., 2015; Kingma et al., 2016). Improved posterior approximations have
shown to be effective in improving variational inference but none of the existing methods are able to
completely close the gap between approximate posterior and true posterior. This leads us to believe
that for most practical models, at least in the near future, the extra coding cost DKL(q(z|x)||p(z|x))
will exist and will not be negligible.

Once we understand the inefficiency of the Bits-Back Coding mechanism, it’s simple to realize why
sometimes the latent code z is not used: if the p(x|z) could model pdata(x) without using information
from z, then it will not use z, in which case the true posterior p(z|x) is simply the prior p(z) and
it’s usually easy to set q(z|x) to be p(z) to avoid incurring an extra cost DKL(q(z|x)||p(z|x)). And
it’s exactly the case when a powerful decoding distribution is used like an RNN autoregressive
distribution, which given enough capacity is able to model arbitrarily complex distributions. Hence
there exists a preference of information when a VAE is optimized: information that can be modeled
locally by decoding distribution p(x|z) without access to z will be encoded locally and only the
remainder will be encoded in z.

We note that one common way to encourage putting information into the code is to use a factorized
decoder p(x|z) =

∏
i p(xi|z) but so long as there is one dimension xj that’s independent of all

other dimensions for true data distribution, pdata(x) = pdata(xj)pdata(x6=j), then the latent code
doesn’t contain all the information about x since at least xj will be modeled locally by factorized
p(x|z). This kind of independence structure rarely exists in images so common VAEs that have
factorized decoder autoencode almost exactly. Other techniques to encourage the usage of the latent
code include annealing the relative weight of of DKL(q(z|x)||p(z)) in the variational lower bound
(Bowman et al., 2015; Kaae Sønderby et al., 2016) or the use of free bits (Kingma et al., 2016), which
can serve the dual purpose of smoothing the optimization landscape and canceling out part of the
Bits-Back Code inefficiency DKL(q(z|x)||p(z|x)).

3 Variational Lossy Autoencoder

Even though the information preference property of VAE might suggest that one should always use
the full autoregressive models to achieve a better code length/log-likelihood, especially when slow
data generation is not a concern, we argue that this information preference property can be exploited
to turn the VAE into a powerful representation learning method that gives us fine-grained control over
the kind of information that gets included in the learned representation.

When we try to learn a lossy compression/representation of data, we can simply construct a decoding
distribution that’s capable of modeling the part of information that we don’t want the lossy represen-
tation to capture, but, critically, that’s incapable of modelling the information that we do want the
lossy representation to capture.

For instance, if we are interested in learning a global representation for 2D images that doesn’t
encode information about detailed texture, we can construct a specific factorization of the autore-
gressive distribution such that it has a small local receptive field as decoding distribution, e.g.,
plocal(x|z) =

∏
i p(xi|z,xWindowAround(i)). Notice that, as long as xWindowAround(i) is smaller

than x<i, plocal(x|z) won’t be able to represent arbitrarily complex distribution over x without
dependence on z since the receptive field is limited such that not all distributions over x admit
such factorizations. In particular, the receptive field window can be a small rectangle adjacent to a
pixel xi and in this case long-range dependency will be encoded in the latent code z. On the other
hand, if the true data distribution admits such factorization for a given datum x and dimension i, i.e.
pdata(xi|xWindowAround(i)) = pdata(xi|x<i), then the information preference property discussed in
Section 2.2 will apply here, which means that all the information will be encoded in local autoregres-
sive distribution for xi. Local statistics of 2D images like texture will likely be modeled completely
by a small local window, whereas global structural information of an images like shapes of objects is
long-range dependency that can only be communicated through latent code z. Therefore we have
given an example VAE that will produce a lossy compression of 2D images carrying exclusively
global information that can’t be modeled locally.
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Notice that a global representation is only one of many possible lossy representations that we can
construct using this information preference property. For instance, the conditional of an autoregressive
distribution might depend on a heavily down-sampled receptive field so that it can only model long-
range pattern whereas local high-frequency statistics need to be encoded into the latent code. Hence
we have demonstrated that we can achieve explicit placement of information by constraining the
receptive field/factorization of an autoregressive distribution that’s used as decoding distribution.

We want to additionally emphasize the information preference property is an asymptotic view in a
sense that it only holds when the variational lowerbound can be optimized well. Thus, we are not
proposing an alternative to techniques like free bits Kingma et al. (2016) or KL annealing, and indeed
they are still useful methods to smooth the optimization problem and used in this paper’s experiments.

Conclusion

We have discussed how to learn a lossy representation in a principled way with VAEs. Due to space
constraint, we defer detailed experiments to appendix.
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Appendix

.1 Learned Prior with Autoregressive Flow

Inefficiency in Bits-Back Coding, i.e., the mismatch between approximate posterior and true posterior,
can be exploited to construct a lossy code but it’s still important to minimize such inefficiency
to improve overall modeling performance/coding efficiency. We propose to parametrize the prior
distribution p(z; θ) with an autoregressive model and show that a type of autoregressive latent code
can in theory reduce inefficiency in Bits-Back coding.

It is well-known that limited approximate posteriors impede learning and therefore various expressive
posterior approximations have been proposed to improve VAE’s density estimation performance
(Turner et al., 2008; Mnih & Gregor, 2014; Salimans et al., 2014; Rezende & Mohamed, 2015;
Kingma et al., 2016). One such class of approximate posteriors that has been shown to attain good
empirical performance is based on the idea of Normalizing Flow, which is to apply an invertible
mapping to a simple random variable, for example a factorized Gaussian as commonly used for
q(z|x), in order to obtain a complicated random variable. For an invertible transformation between
a simple distribution y and a more flexible z, we know from the change-of-variable technique that
log q(z|x) = log q(y|x)− log det dzdy and using q(z|x) as approximate posterior will decrease the
coding efficiency gap DKL(q(z|x)||p(z|x)) provided the transformation is sufficiently expressive.

Kingma et al. (2016) introduced Inverse Autoregressive Flow, which is a powerful class of such
invertible mappings that have simple determinant: zi =

yi−µi(y1:i−1)
σi(y1:i−1)

, where µi(.) ∈ R, σi(.) ∈ R+

are general functions that can be parametrized by expressive neural networks, such as MADE and
PixelCNN variants (Germain et al., 2015; van den Oord et al., 2016a). Inverse autoregressive flow is
the inverse/whitening of autoregressive flow: yi = ziσi(y1:i−1) + µi(y1:i−1). We refer interested
readers to (Rezende & Mohamed, 2015; Kingma et al., 2016) for in-depth discussions on related
topics.

In this paper, we propose to parametrize our learnable prior as an autoregressive flow from some
simple noise source like spherical Gaussian. Next, we show that using latent code transformed
by autoregressive flow (AF) is equivalent to using inverse autoregressive flow (IAF) approximate
posterior, which explains why it can similarly improve Bits-Back Coding efficiency. Moreover,
compared with an IAF posterior, an AF prior has a more expressive generative model that essentially
“comes for free”.

For an autoregressive flow f , some continuous noise source ε is transformed into latent code z:
z = f(ε). Assuming the density function for noise source is u(ε), we similarly know that log p(z) =
log u(ε) + log det dεdz .

Simply re-arranging the variational lowerbound for using AF prior reveals that having an AF latent
code z is equivalent to using an IAF posterior for ε that we can interpret as the new latent code:

L(x; θ) = Ez∼q(z|x) [log p(x|z) + log p(z)− log q(z|x)] (12)

= Ez∼q(z|x),ε=f−1(z)

[
log p(x|f(ε)) + log u(ε) + log det

dε

dz
− log q(z|x)

]
(13)

= Ez∼q(z|x),ε=f−1(z)

log p(x|f(ε)) + log u(ε)− (log q(z|x)− log det
dε

dz
)︸ ︷︷ ︸

IAF Posterior

 (14)

AF prior is the same as IAF posterior along the encoder path, f−1(q(z|x)), but differs along the
decoder/generator path: IAF posterior has a shorter decoder path p(x|z) whereas AF prior has a
deeper decoder path p(x|f(ε)). The crucial observation is that AF prior and IAF posterior have the
same computation cost under the expectation of z ∼ q(z|x), so using AF prior makes the model
more expressive at no training time cost.
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A Experiments

In this paper, we evaluate VLAE on 2D images and leave extensions to other forms of data to
future work. For the rest of the section, we define a VLAE model as a VAE that uses AF prior
and autoregressive decoder. We choose to implement conditional distribution p(x|z) with a small-
receptive-field PixelCNN (van den Oord et al., 2016a), which has been proved to be a scalable
autoregressive model.

For evaluation, we use binary image datasets that are commonly used for density estimation tasks:
MNIST (LeCun et al., 1998) (both statically binarized 1 and dynamically binarized version (Burda
et al., 2015a)), OMNIGLOT (Lake et al., 2013; Burda et al., 2015a) and Caltech-101 Silhouettes
(Marlin et al., 2010). All datasets uniformly consist of 28x28 binary images, which allow us to use
a unified architecture. For the decoder, we use a variant of PixelCNN that has 6 layers of masked
convolution with filter size 3, which means the window of dependency, xWindowAround(i), is limited
to a small local patch. Experimental setup and hyperparameters are detailed in the appendix. Reported
marginal NLL is estimated using Importance Sampling with 4096 samples.

We designed experiments to answer the following questions:

• Can VLAE learn lossy codes that encode global statistics?

• Does using AF priors improves upon using IAF posteriors as predicted by theory?

• Does using autoregressive decoding distributions improve density estimation performance?

A.1 Lossy Compression

First we are interested in whether VLAE can learn a lossy representation/compression of data by using
the PixelCNN decoder to model local statistics. We trained VLAE model on Statically Binarized
MNIST and the converged model has E[DKL(q(z|x)||p(z))] = 13.3 nats = 19.2 bits, which is the
number of bits it uses on average to encode/compress one MNIST image. By comparison, an identical
VAE model with factorized decoding distribution will uses on average 37.3 bits in latent code, and
this thus indicates that VLAE can learn a lossier compression than a VAE with regular factorized
conditional distribution.

(a) Original test-set images (left) and “decompres-
sioned” versions from VLAE’s lossy code (right)

(b) Samples from VLAE

Figure 1: Statically Binarized MNIST

The next question is whether VLAE’s lossy compression encodes global statistics and discards
local statistics. In Fig 1a, we visualize original images xdata and one random “decompression”

1We use the version provided by Hugo Larochelle.
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xdecompressed from VLAE: z ∼ q(z|xdata),xdecompressed ∼ p(x|z). We observe that none of the
decompressions is an exact reconstruction of the original image but instead the global structure of the
image was encoded in the lossy code z and regenerated. Also worth noting is that local statistics are
not preserved but a new set of likely local statistics are generated in the decompressed images: the
binary masks are usually different and local styles like stroke width are sometimes slightly different.

However, we remark that the lossy code z doesn’t always capture the kind of global information that
we care about and it’s dependent on the type of constraint we put on the decoder. For instance, in
Fig 2a, we show decompressions for OMNIGLOT dataset, which has more meaningful variations in
small patches than MNIST, and we can observe that semantics are not preserved in some cases. This
highlights the need to specify the type of statistics we care about in a representation, which will be
different across tasks and datasets, and design decoding distribution accordingly.

(a) Original test-set images (left) and “decompres-
sioned” versions from VLAE’s lossy code (right)

(b) Samples from VLAE

Figure 2: OMNIGLOT

A.2 Density Estimation

Next we investigate whether leveraging autoregressive models as latent distribution p(z) and as
decoding distribution p(x|z) would improve density estimation performance.

Table 1: Statically Binarized MNIST
Model NLL Test
Normalizing flows (Rezende & Mohamed, 2015) 85.10
DRAW (Gregor et al., 2015) < 80.97
Discrete VAE (Rolfe, 2016) 80.04
PixelRNN (van den Oord et al., 2016a) 79.20
IAF VAE (Kingma et al., 2016) 79.88
AF VAE 79.30
VLAE 79.03

To verify whether AF prior is able to improve upon IAF posterior alone, it’s desirable to test this
model without using autoregressive decoder but instead using the conventional independent Bernoulli
distribution for p(x|z). Hence we use the best performing model from Kingma et al. (2016) on
statically binarized MNIST and make the single modification of replacing the original IAF posterior
with an equivalent AF prior, removing the context. As seen in Table 1, VAE with AF prior is
outperforming VAE with an equivalent IAF posterior, indicating that the deeper generative model
from AF prior is beneficial. A similar gain carries over when an autoregressive decoder is used: on
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statically binarized MNIST, using AF prior instead of IAF posterior reduces train NLL by 0.8 nat and
test NLL by 0.6 nat.

Next we evaluate whether using autoregressive decoding distribution can improve performance
and we show in Table 1 that a VLAE model, with AF prior and PixelCNN conditional, is able to
outperform a VAE with just AF prior and achieves new state-of-the-art results on statically binarized
MNIST.

In addition, we hypothesize that the separation of different types of information, the modeling global
structure in latent code and local statistics in PixelCNN, likely has some form of good inductive
biases for 2D images. In order to evaluate if VLAE is an expressive density estimator with good
inductive biases, we will test a single VLAE model, with the same network architecture, on all
binary datasets. We choose hyperparameters manually on statically binarized MNIST and use the
same hyperparameters to evaluate on dynamically binarized MNIST, OMNIGLOT and Caltech-
101 Silhouettes. We also note that better performance can be obtained if we individually tune
hyperparameters for each dataset.

Table 2: Dynamically binarized MNIST
Model NLL Test
Convolutional VAE + HVI (Salimans et al., 2014) 81.94
DLGM 2hl + IWAE (Burda et al., 2015a) 82.90
LVAE (Kaae Sønderby et al., 2016) 81.74
DRAW + VGP (Tran et al., 2015) < 79.88
IAF VAE (Kingma et al., 2016) 79.10
Unconditional Decoder 87.55
VLAE 78.53

Table 3: OMNIGLOT
Model NLL Test
VAE (Burda et al., 2015a) 106.31
IWAE (Burda et al., 2015a) 103.38
RBM (500 hidden) (Burda et al., 2015b) 100.46
DRAW (Gregor et al., 2015) < 96.50
Conv DRAW (Gregor et al., 2016) < 91.00
Unconditional Decoder 95.02
VLAE 90.98

Table 4: Caltech-101 Silhouettes
Model NLL Test
RWS SBN (Bornschein & Bengio, 2014) 113.3
RBM (Cho et al., 2011) 107.8
NAIS NADE (Du et al., 2015) 100.0
Discrete VAE (Rolfe, 2016) 97.6
SpARN (Goessling & Amit, 2015) 88.48
Unconditional Decoder 89.26
VLAE 77.36

As seen in Table 2,3,4, with the same set of hyperparameters tuned on statically binarized MNIST,
VLAE is able to perform well on the rest of datasets, significantly exceeding previous state-of-the-
art results on dynamically binarized MNIST and Caltech-101 Silhouettes and tying statistically
with best previous result on OMNIGLOT. In order to isolate the effect of expressive PixelCNN as
decoder, we also report performance of the same PixelCNN trained without VAE part under the name
“Unconditional Decoder”.
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B Related Work

We investigate a fusion between variational autoencoders with continuous latent variables (Kingma
& Welling, 2013; Rezende et al., 2014) and neural autoregressive models. For autoregression, we
specifically apply a novel type of architecture where autoregression is realised through a carefully
constructed deep convolutional network, introduced in the PixelCNN model for images (van den
Oord et al., 2016a,b). These family of convolutional autoregressive models was further explored, and
extended, for audio in WaveNet (Oord et al., 2016), video in Video Pixel Networks (Kalchbrenner
et al., 2016b) and language in ByteNet (Kalchbrenner et al., 2016a).

The combination of latent variables with expressive decoder was previously explored using recurrent
networks mainly in the context of language modeling (Chung et al., 2015; Bowman et al., 2015;
Serban et al., 2016; Fraccaro et al., 2016; Xu & Sun, 2016).

Using autoregressive model on latent code was explored in the context of discrete latent variables in
DARN (Gregor et al., 2013). Kingma et al. (2016), Kaae Sønderby et al. (2016), Gregor et al. (2016)
and Salimans (2016) explored VAE architecture with an explicitly deep autoregressive prior for
continuous latent variables, but the autoregressive data likelihood is intractable in those architectures
and needs to inferred variationally. In contrast, we use multiple steps of autoregressive flows that has
exact likelihood and analyze the effect of using expressive latent code.

Optimization challenges for using (all levels of) continuous latent code were discussed before and
practical solutions were proposed (Bowman et al., 2015; Kaae Sønderby et al., 2016; Kingma et al.,
2016). In this paper, we present a complementary perspective on when/how should the latent code be
used by appealing to a Bits-Back interpretation of VAE.

Learning a lossy compressor with latent variable model has been investigated with ConvDRAW (Gre-
gor et al., 2016). It learns a hierarchy of latent variables and just using high-level latent variables will
result in a lossy compression that performs similarly to JPEG. Our model similarly learns a lossy
compressor but it uses an autoregressive model to explicitly control what kind of information should
be lost in compression.

C Conclusion

In this paper, we analyze the condition under which the latent code in VAE should be used, i.e. when
does VAE autoencode, and use this observation to design a VAE model that’s a lossy compressor of
observed data. At modeling level, we propose two complementary improvements to VAE that are
shown to have good empirical performance.

VLAE has the appealing properties of controllable representation learning and improved density
estimation performance but these properties come at a cost: compared with VAE models that have
simple prior and decoder, VLAE is slower at generation due to the sequential nature of autoregressive
model. In addition, we also tried our method on CIFAR-10 dataset, but so far we only got 3.09 bits
per dim, which is not as good as PixelRNN’s 3.00 bits per dim. We believe that by improving the
VAE training procedure, the gap could be closed.

Moving forward, we believe it’s exciting to extend this principle of learning lossy codes to other
forms of data, in particular those that have a temporal aspect like audio and video. Another promising
direction is to design representations that contain only information for downstream tasks and utilize
those representations to improve semi-supervised learning.

D Detailed experiment setup

For VAE’s encoder and decoder, we use the same ResNet (He et al., 2015) VAE architecture as the
one used in IAF MNIST experiment (Kingma et al., 2016). The only difference is that the decoder
network now, instead of outputing a 28x28x1 spatial feature map to specify the mean of a factorized
bernoulli distribution, outputs a 28x28x4 spatial feature map that’s concatenated with the original
binary image channel-wise, forming a 28x28x5 feature map that’s then fed through a typical masked
PixelCNN (van den Oord et al., 2016a). As such even though the PixelCNN conditions on the latent
code, we don’t call it a Conditional PixelCNN because it doesn’t use the specific architecture that
was proposed in van den Oord et al. (2016b). For the PixelCNN, it has 6 masked convolution layers
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with 12 3x3 filters organized in ResNet blocks, and it has 4 additional 1x1 convolution ResNet block
between every other masked convolution layer to increase processing capacity since it employs fewer
masked convolutions than usual. All the masked convolution layer have their weights tied to reduce
overfitting on statically binarized MNIST, and untying the weights will increase performance for
other datasets. Exponential Linear Units (Clevert et al., 2015) are used as activation functions in both
VAE network and PixelCNN network.

A latent code of dimension 64 was used. For AF prior, it’s implemented with MADE (Germain
et al., 2015) as detailed in Kingma et al. (2016). We used 4 steps of autoregressive flow and each
flow is implemented by a 3-layer MADE that has 640 hidden units and uses Relu (Nair & Hinton,
2010) as activation functions. Differing from the practice of Kingma et al. (2016), we use mean-only
autoregressive flow, which we found to be more numerically stable.

In terms of training, Adamax (Kingma & Ba, 2014) was used with a learning rate of 0.002. 0.01
nats/data-dim free bits (Kingma et al., 2016) was found to be effective in dealing with the problem of
all the latent code being ignored early in training. Polyak averaging (Polyak & Juditsky, 1992) was
used to compute the final parameters, with α = 0.998.

All experiments are implemented using TensorFlow (Abadi et al., 2016).
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