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Abstract

We propose using the black-box α-divergence [1] as a flexible alternative to vari-
ational inference in deep generative models. By simply switching the objective
function from the variational free-energy to the black-box α-divergence objective
we are able to learn better generative models, which is demonstrated by a consider-
able improvement of the test log-likelihood in several preliminary experiments.

1 Generative models and inference networks

We consider a probabilistic model for N D-dimensional observations x = {xn}Nn=1 and assume
K-dimensional continuous latent variables z = {zn}Nn=1, zn ∈ RK as follows,

p(z) = N (z;0, I) (1)

p(x|z, θ) =
∏
n

p(xn|zn, θ) (2)

where p(xn|zn, θ) is typically Gaussian N (xn; fθ(zn), σ2
xI) if xn ∈ RD, or Bernoulli

B(xn; Φ(fθ(zn))) with a sigmoidal link function Φ(·) for binary data xn, and fθ is a determin-
istic mapping parameterised by θ. Exact Bayesian inference in this model class, in general, is
intractable, and we have to resort to approximate inference schemes. One popular deterministic ap-
proximate inference technique is variational inference (VI), which is the first step towards turning the
aforementioned intractable inference problem into a tractable optimisation problem. By introducing a
variational approximation qγ(z), a negative variational free-energy can be obtained, which is a lower
bound to the log marginal likelihood of the observed data,

L(θ) = log p(x|θ) ≥
∫

dzqγ(z) log
p(x, z|θ)
qγ(z)

= FVFE(θ, γ), (3)

where γ are the variational parameters. For continuous latent variables, a typical choice of the
approximate distribution is a diagonal Gaussian qγ(z) =

∏
n qγ(zn), i.e. mean-field between latent

variables2. The variational lower bound can be decomposed further,

F(θ, γ) = −KL(qγ(z)||p(z)) +

N∑
n=1

∫
dznqγ(zn) log p(xn|zn). (4)

In complex generative models, evaluating the expectations of the log likelihood terms, and hence,
F and its gradients, is not tractable. However, they can be approximately computed using the log-
derivative trick or Monte Carlo with the reparameterisation trick [2, 3]. Additionally, the standard

2and, in general, also between latent dimensions



VI formalism requires N sets of parameters to be optimised. This can be avoided using a recognition
model or inference network, qγ(zn) = N (zn;µγ(xn), σ2

γ(xn)), where γ parameterises the mapping
from the observed data xn to the mean and variance of q. Because the objective is a variational free
energy, and the architecture involves a generative mapping (decoder) and a recognition mapping
(encoder), this class of models is often referred to as the variational auto-encoder (VAE).

One simple, but powerful, extension of the VAE is the importance weighted auto-encoder (IWAE) [4].
This method is derived using importance sampling, but it returns for a tighter lower bound compared
to the VAE free energy (for K > 1),

L(θ) = log p(x|θ) ≥
N∑
n=1

log
1

K

K∑
k=1

p(xn, zn,k|θ)
qγ(zn,k)

= FIWAE(θ, γ), (5)

where zn,k=1:K are K independent samples from qγ(zn). The bound in eq. (5) saturates as K →∞.

2 Black-box α-divergence

Black-box α-divergence is a recently proposed framework for approximate inference which includes
VI as a particular case [1]. This general scheme uses the factor tying scheme employed in Stochastic
Expectation Propagation [5], but applies this directly to the Power-Expectation Propagation energy,
yielding a closed form energy function that can be directly optimised without the need for message
passing. Furthermore, black-box α-divergence can be applied to a variety of probabilistic models and
can be scaled to large-scale datasets.

The black-box α-divergence objective for the generative model described above is

FBBAE =

N∑
n=1

(
logZp(zn) − logZq(zn) −

1

α
log Eq

[(
p(xn|zn, θ)
f(zn)

)α])
(6)

where p(zn) = exp(s(zn)ᵀλ0 − logZp(zn)), f(zn) = exp(s(zn)ᵀλn), q(zn) = exp(s(zn)ᵀ(λ0 +
λn) − logZq(zn)) are the prior, un-normalised factor approximation and posterior distribution
corresponding to the n-th data-point, respectively. Similar to the VAE, we can employ a recognition
model to parameterise the factor approximation. Namely, f(zn) ∝ N (zn;µγ(xn), σ2

γ(xn)). We will
refer to this objective for the recognition model (θ) and the generative model (γ) as the black-box α
auto-encoder (BBAE).

In general, the expectations in the objective above can not be evaluated analytically. However, they
can be approximated using Monte-Carlo with K samples drawn from q(zn),

FBBAE ≈
N∑
n=1

(
logZp(zn) − logZq(zn) −

1

α
log

1

K

K∑
k=1

(
p(xn|zn,k, θ)
f(zn,k)

)α)
(7)

2.1 Connections to VAE, IWAE, and the variational Rényi free energy

• As α → 0, the objective in eq. (6) becomes the VAE objective in eq. (4). See [1, 6] for
further details.

• When α = 1, the Monte-Carlo estimate of the BBAE objective in eq. (7) is identical to the
IWAE objective in eq. (5). This identity is, perhaps, surprising given the difference between
the motivation and approaches taken to arrive at the IWAE and the BBAE.

• The black-box α divergence objective is a special case of the variational Rényi (VR) bound
[7], when the size of data minibatches in the stochastic VR objective is 1.

3 Preliminary experiments

The proposed training scheme is evaluated using a deep generative model on two datasets: binarised
MNIST [8] and Omniglot [9]. The generative and recognition mappings are both neural networks,
each with one deterministic hidden layer of 400 units. We train the model using the BBAE objective
with different α values, and the VAE objective, during a total of 2000 epochs. The quality of the
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inference and generative networks learnt is compared using the log-likelihood of test images, which
is computed using importance sampling with 2000 samples drawn from the recognition model [3].
The results averaged over 5 trials are displayed in fig. 1. These results show a gain obtained by simply
changing the training objective from VAE/IWAE to BBAE, demonstrated by a better log-likelihood
on test data for α values bigger than 1, such as α = 2.
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Figure 1: Average test log-likelihood in nats.

4 Conclusions and Future Work

We have described how Black-box α-divergence can be used in the context of un-supervised learning
to find a generative mapping (decoder) and a recognition mapping (encoder) to explain the observed
data. Black-box α-divergence is a very general method for approximate inference that is able to
obtain, as a particular case, previous methods for un-supervised learning, including the VAE (α→ 0)
and the IWAE (α = 1). Furthermore, by changing the value of α we are able to obtain generative and
recognition models with better properties. In particular, the results show that setting α > 1 provides
better results in terms of the test log-likelihood than the VAE or the IWAE.

Regarding future work we will consider a deep analysis of the reasons for which α > 1 gives
better results on the datasets investigated. The is complex as it involves an interaction between the
α-divergence selected (i.e. setting of α), and the Monte Carlo approximation. Moreover, we also
plan to extend the variational framework to handle the uncertainty in the weights of the generative
model (θ). By doing so we expect to capture complicated patterns in the generative distribution and
to obtain improved results in consequence.
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