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Bayesian nonparametric priors

Two main categories of priors depending on parameter spaces

Spaces of functions
random functions

• Stochastic processes
s.a. Gaussian processes

• Random basis expansions

• Random densities

• Mixtures

Spaces of probability measures
discrete random measures

• Dirichlet process ⊂ Pitman–Yor ⊂
Gibbs-type ⊂ Species sampling processes

• Completely random measures

[Wikipedia] [Brix, 1999]
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Completely random measures

µ̃ =
∑
i≥1

JiδZi

where the jumps (Ji )i≥1 and the jump points (Zi )i≥1 are independent

Definition (Kingman, 1967)

Random measure µ̃ s.t. ∀ A1, . . . ,Ad disjoint sets
µ̃(A1), . . . , µ̃(Ad) are mutually independent

• Independent Increment Processes, Lévy processes

• Popular models with applications in biology, sparse
random graphs, survival analysis, machine learning,
etc. Pivotal role in BNP (Lijoi and Prünster, 2010,
Jordan, 2010)



5/15

Completely random measures Ferguson & Klass moments algo Simulation study Theoretical results Application to density estimation

Ferguson and Klass algorithm and goal
• Jumps in decreasing order in µ̃ =

∑∞
j=1 JjδZj

• −→ Minimal error at threshold M µ̃(X)− µ̃M(X) =
∑∞

j=M+1 Jj
• BNPdensity R package on CRAN, for F & K mixtures of normalized CRMs

Algorithm 1 Ferguson and Klass algorithm

1: sample ξj ∼ PP for j = 1, . . . ,M
2: define Jj = N−1(ξj) for j = 1, . . . ,M
3: sample Zj ∼ P0 for j = 1, . . . ,M
4: approximate µ̃ by µ̃M =

∑M
j=1 JjδZj
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Moment matching

Assessing the error of truncation at threshold M

TM = µ̃(X)− µ̃M(X) =
∞∑

j=M+1

Jj

Relative error index Moment-based index

eM = EFK

[
JM∑M
j=1 Jj

]
`M =

(
1

K

K∑
n=1

(
m1/n

n − m̂1/n
n

)2
)1/2

Examples of completely random measures

• Generalized gamma process by Brix (1999), γ ∈ [0, 1), θ ≥ 0

• Superposed gamma process by Regazzini et al. (2003), η ∈ N
• Stable-beta process by Teh and Gorur (2009), σ ∈ [0, 1), c > −σ
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Moment matching

Relative error index eM Moment-based index `M
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Evaluation of error on functionals

Functional of interest: the total mass, criterion ∆1 = |µ̃(X)− µ̃M(X)|
Define similarly ∆k for higher order moments of the total mass
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Moment matching

Reverse moment index M(`) = M ↔ `M = `
Number of jumps M needed to achieve a given precision, here of ` = 10%
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Posterior moment match

Theorem (James et al., 2009, Teh and Gorur, 2009)

In mixture models with normalized generalized gamma (left) and the Indian
buffet process based on the stable beta process (right) the posterior
distribution of µ̃ is essentially (conditional on some latent variables)

µ̃∗ +
k∑

j=1

J∗j δY∗
j
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Posterior moment match

Posterior of inverse-Gaussian process:
µ̃∗ +

∑k
j=1 J

∗
j δY∗

j

E

(
k∑

j=1

J∗j

)
/E
(
µ̃∗(X)

)

k\n 10 30 100

1 3.34 7.30 13.50

nγ 2.65 4.68 6.05

n 0.89 0.98 0.99 50

100

50

100

0

5
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n
k

Theorem (Arbel, De Blasi, Prünster, 2015)

Denote by P0 the true data distribution. In the NRMI model with prior guess
P∗, the posterior of P̃ converges weakly to P∞:

• if P0 is discrete, then P∞ = P0

• if P0 is diffuse, then P∞ = σP∗ + (1− σ)P0
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Bounding TM in probability

Proposition (Arbel and Prünster, 2016, Brix, 1999)

Let TM be the truncation error for the Generalized Gamma or the Stable Beta
Process.

Then for any ε ∈ (0, 1),

P
(
TM ≤ tεM

)
≥ 1− ε

for

tεM .

 e−CM if σ = 0,

1

M1/σ−1 if σ 6= 0,

with ugly explicit constants
depending on ε, γ, θ, σ and c

M

t~ Mε
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Density estimation

Mixtures of normalized random measures with independent increments

Yi |µi , σi
ind∼ k(·|µi , σi ), i = 1, . . . , n,

(µi , σi )|P̃
iid∼ P̃, i = 1, . . . , n,

P̃ ∼ NRMI,

Galaxy dataset. Kolmogorov–Smirnov distance dKS(F̂`M , F̂eM ) between

estimated cdfs F̂`M and F̂eM under, respectively, the moment-match (with
`M = 0.01) and the relative error (with eM = 0.1, 0.05, 0.01) criteria.

γ eM = 0.1 eM = 0.05 eM = 0.01

0 19.4 15.5 9.2

0.25 31.3 23.7 15.1

0.5 42.4 28.9 18.3

0.75 64.8 41.0 23.2
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Discussion

• Methodology based on moments for assessing quality of approximation in
Ferguson and Klass algorithm, a conditional algorithm

• Should be preferred to relative error

• All-purpose criterion: validates the samples of a CRM rather than a
transformation of it

• Going to be included in a new release of BNPdensity R package

• Future work: compare L1 type bounds (Ishwaran and James, 2001) in the
Ferguson & Klass context and in size biased settings (see the review by
Campbell et al., 2016)

For more details and for extensive numerical illustrations:

A. and Prünster (2016). A moment-matching Ferguson and Klass
algorithm. Statistics and Computing. arXiv:1606.02566

arXiv:1606.02566
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